Patella Fractures and Extensor Mechanism Injuries

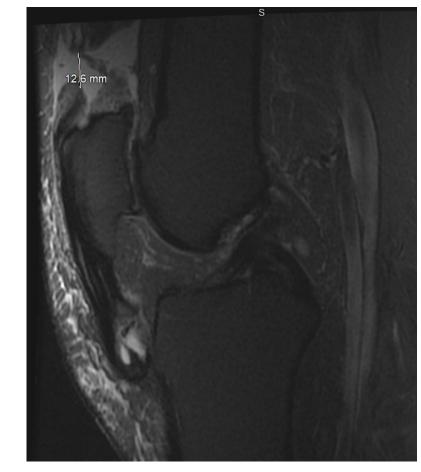
Paul S. Whiting MD

Director of Orthopaedic Trauma Research

Assistant Professor – University of Wisconsin

Overview & Objectives

- Epidemiology & Mechanism of Injury
- Anatomy & Biomechanics
- Diagnosis & Classification
- Non-Operative Treatment
- Operative Treatment
 - Patella Fractures: Simple & Complex
 - Quad/Patella Tendon Injuries
- Complications
- Summary/Key Points


Illustrative Cases Throughout This Lecture

Core Curriculum V5

Epidemiology & Mechanism of Injury

- Patella Fractures:
 - ~1% of all fractures
- Mechanism of Injury:
 - Direct impact (fall, dashboard)
 - Indirect (forceful quadriceps contraction)
 - Frequent cause of patella tendon/quad tendon ruptures
 - Combined (impact + quad contraction)

Anatomy – Blood Supply

- Geniculate arteries (branches of popliteal artery)
 - Lateral Superior (LS)
 - Medial Superior (MS)
 - Lateral Inferior (LI)
 - Medial Inferior (MI)
 - Supreme (S) (branch of SFA)
 - Anterior Tibial Recurrent (ATR) (branch of anterior tib)
- Robust blood supply:
 - Even in setting of fracture, most fragments retain blood supply

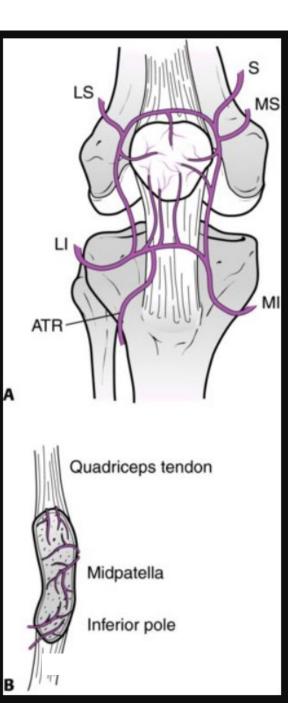
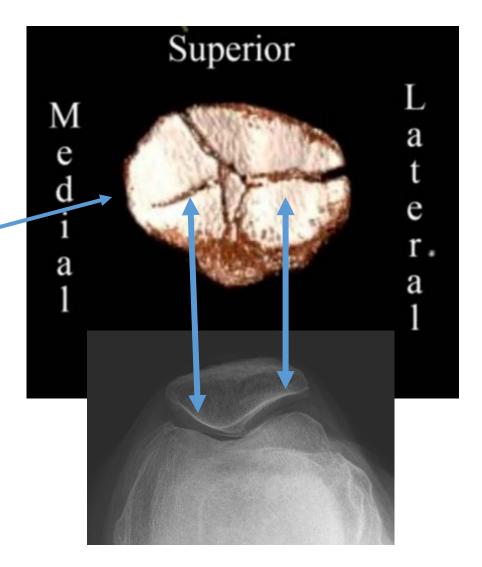


Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-5.



<u>Anatomy – Articular Facets</u>

Image Source: Misir et al. Fracture Patterns and Comminution Zones in OTA/AO 34C Type Patellar Fractures. *J Orthop Trauma* 2020 May;34(5). E159-e164. Fig. 1.

- Medial Facet:
 - Separated from lateral facet by vertical ridge
 - Usually concave, but can be convex
- Odd Facet:
 - Medial border of the patellar articular surface
 - Only contacts femur in flexion >45 degrees

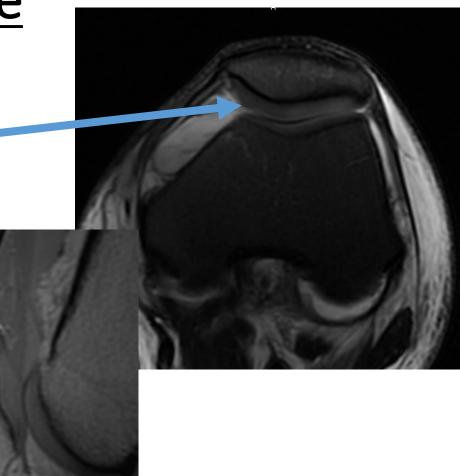
- Lateral Facet:
 - Largest facet (typically)

Core Curriculum V5

• Concave

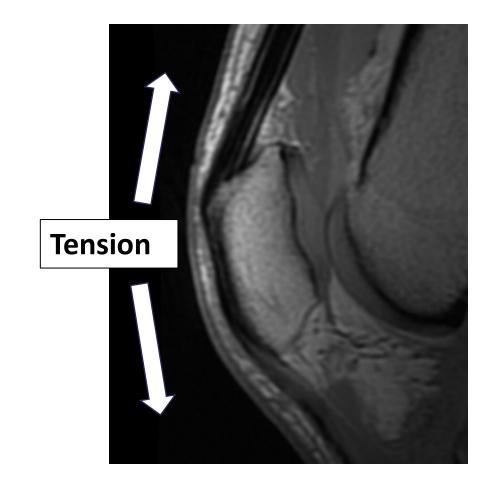
<u>Anatomy – Bipartite Patella</u>

- Normal anatomic variant
- Secondary ossification center fails to fuse to primary ossification center
- Often mistaken for an acute fracture
- Most commonly superolateral
- Smooth, well-corticated edges
- Bilateral in ~50% of patients

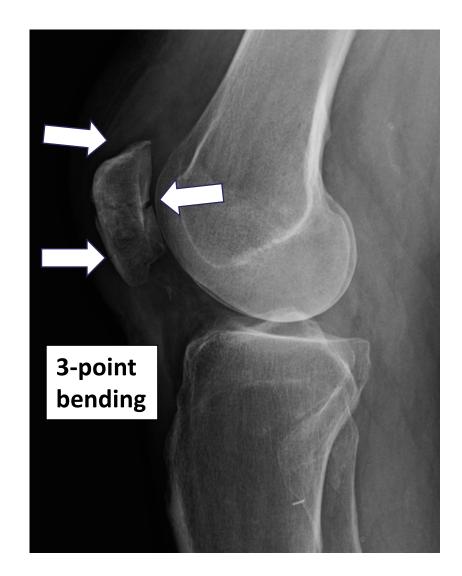


Core Curriculum V5

<u>Anatomy – Articular Cartilage</u>


- Undersurface of Patella:
 - Covered with *thick* articular cartilage
 - Up to 1cm thick
- Distal pole:
 - Devoid of cartilage
 - As a result, most distal pole fractures are *extra-articular* injuries

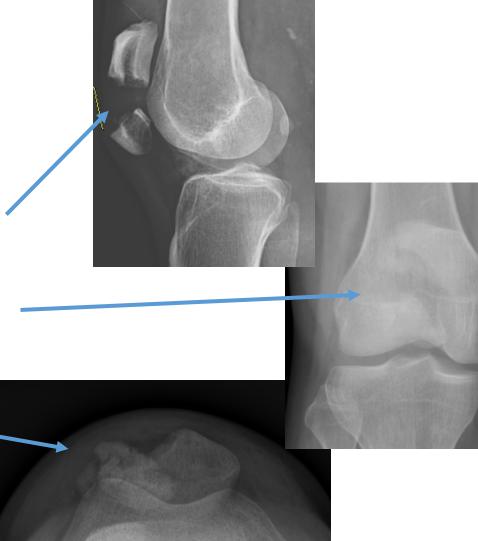
Biomechanics


- Extensor mechanism critical for:
 - Maintaining upright posture
 - Generating torque for knee extension
- Patella serves to *displace* the quad tendon away from knee's center of rotation:
 - Increases quad tendon's moment arm
 - ↑ Mechanical advantage up to 50%
- Significant tensile forces generated
 - Up to 6,000 N (~8x body weight)

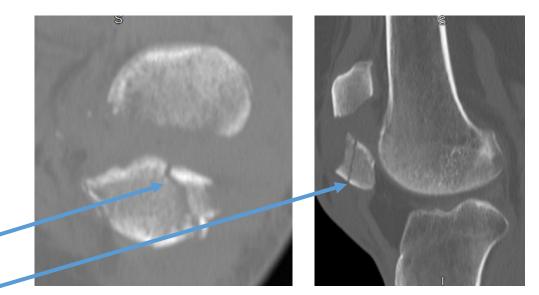
Biomechanics

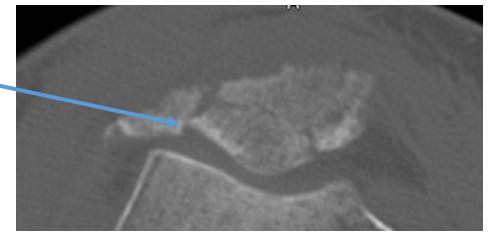
- Patella Experiences 3-Point Bending forces in knee flexion
 - Where articular cartilage is thickest
- Patello-Femoral Contact Forces:
 - Greater than any other joint
 - Up to 7x body weight
 - Highest during squatting, ascending and descending stairs

Diagnosis – Physical Exam


- All Extensor Mechanism Injuries:
 - Hemarthrosis/Effusion
 - Inability to perform straight leg raise * If retinaculum intact, pt may be able to SLR
- Patella fractures:
 - Palpable defect between fracture fragments
- Quad Tendon/Patella Tendon Injury:
 - Palpable defect:
 - Proximal to patella (quad tendon injury)
 - Distal to patella (patella tendon injury)

<u>Diagnosis – Patella Fractures</u>


- X-rays (AP/Lateral)
 - Typically sufficient to confirm diagnosis
 - Lateral view:
 - degree of displacement
 - AP view:
 - fracture obliquity & degree of comminution
 - Sunrise view:
 - Additional fracture characteristics



<u>Diagnosis – Patella Fractures</u>

- Advanced imaging:
 - CT Scan
 - In comminuted fractures, helpful for pre-op planning
 - Improved understanding of fracture pattern:
 - # of fragments
 - Fracture orientation -
 - Articular impaction/step-off
 - MRI
 - Rarely needed for isolated patella fractures
 - Useful if concomitant knee ligament injury suspected

<u>Diagnosis – Quad/Patellar Tendon Injuries</u>

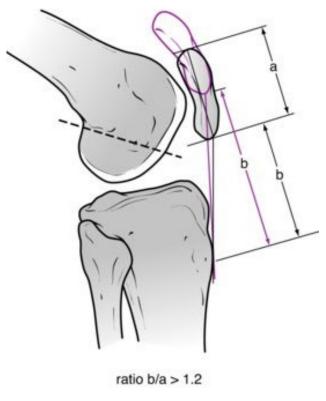
- X-ray: Lateral view
 - In 90 flexion, superior pole normally rests *posterior* to the anterior femoral line
 - With patella tendon injury, patella rests *anterior* to the anterior femoral line

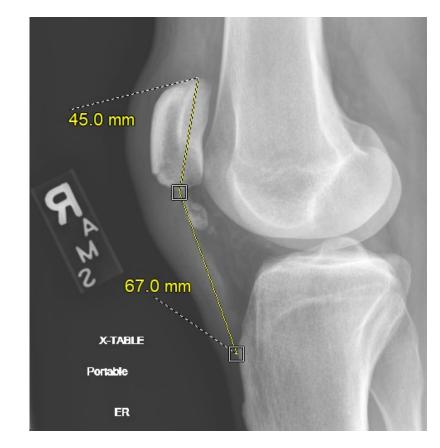
	6
	- TA
7	-///
E	
62	

OA

Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-3.

<u>Diagnosis – Quad/Patellar Tendon Injuries</u>


• X-ray: Lateral view


• Example:

• Insall-Salvati Ratio:

Length of patella tendon (b) Length of patella (a)

- >1.2 = patella tendon tear (patella alta)
- < 0.8 = quad tendon tear (patella baja)

Ratio = 1.49 (patella alta)

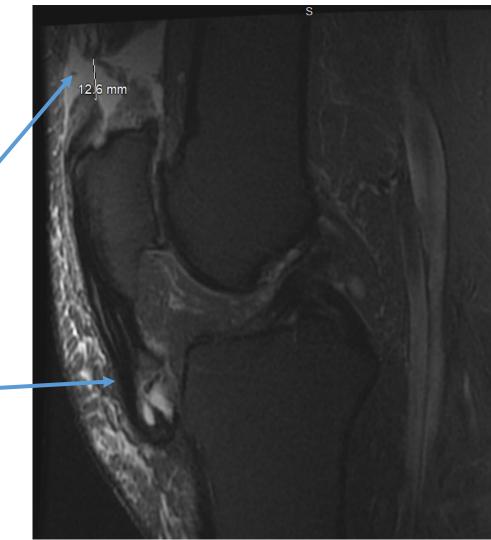
Patella length = 45mm

Patella tendon length = 67mm

Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-3.

Diagnosis – Quad/Patellar Tendon Injuries

- X-ray: AP view
 - Normal Patella position:
 - Inferior pole within 2cm of the plane formed by distal femoral condyles
 - Patella alta:
 - Concern for patella tendon injury
 - Patella baja
 - Concern for quadriceps tendon injury


Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-3.

2 cm

Diagnosis – Quad/Patellar Tendon Injuries

- MRI:
 - Confirms physical exam and X-ray findings in quad/patella tendon injury
 - Disruption of quadriceps
 (or patellar tendon)
 - *Laxity* or *redundancy* of the *opposite* side of the extensor mechanism

Classification

- Descriptive Classification
 - Displaced vs. Undisplaced
 - If *displaced*, need to describe...
 - Primary Fracture Line (Transverse vs. Vertical)
 - Location (midportion vs. superior or inferior pole)
 - Degree of comminution
- AO/OTA Classification rarely used

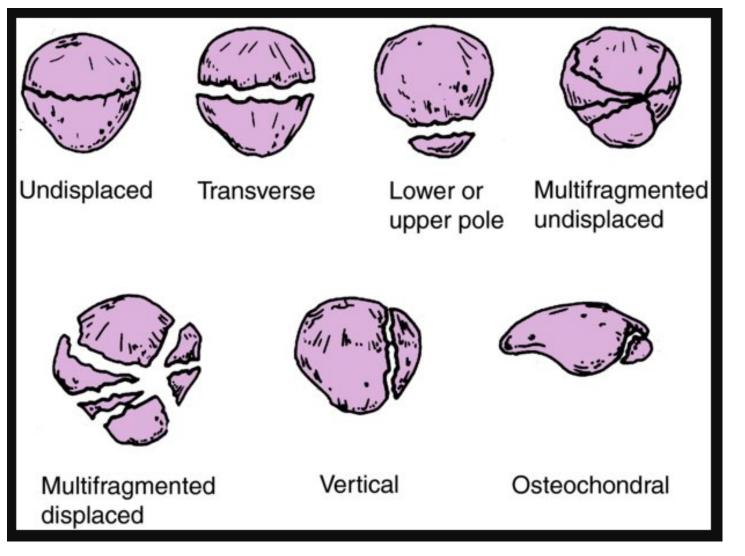


Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-4.

Non-Operative Treatment

- Patients medically unfit for surgery
- Non-displaced fractures
- "Minimally displaced" fractures with intact extensor mechanism
 - No clear consensus on *"acceptable"* amount of displacement
 - Depends in part on patient's activity level
 - Pre-existing arthritis:
 - Favors non-operative treatment

Non-Operative Treatment

• 63 yo M – Fall from standing – Closed Fx – Intact Extensor Mechanism

Injury Films showing 3mm articular gap

- WBAT, hinged knee brace
- Locked in full extension

6-week F/U X-rays

- Allowed Active Flexion, Passive Extension 0-60°
- Progress 10° per week

12-week F/U X-rays

- Allowed Unrestricted ROM/strengthening

```
Core Curriculum V5
```

<u>Non-Operative Treatment – Example # 2</u>

• 80 yo M – Fall from standing – Intact Ext. Mechanism – Bad arthritis

Injury Films – some articular incongruity

- WBAT, hinged knee brace
- Locked in full extension

2-week F/U No interval

-

No interval displacement

6-week F/U X-rays

- Allowed Active Flexion, Passive Extension 0-60°
- Progress 10° per week

12-week F/U X-rays

- Allowed Unrestricted ROM/strengthening
 - Core Curriculum V5

Operative Treatment – Many Options!

- Most described techniques are for simple fractures:
 - Transverse
 - Non-comminuted
 - Good bone quality
- Simple Fracture patterns best illustrate key *concepts:*
 - Resisting tensile forces
 - Interfragmentary compression

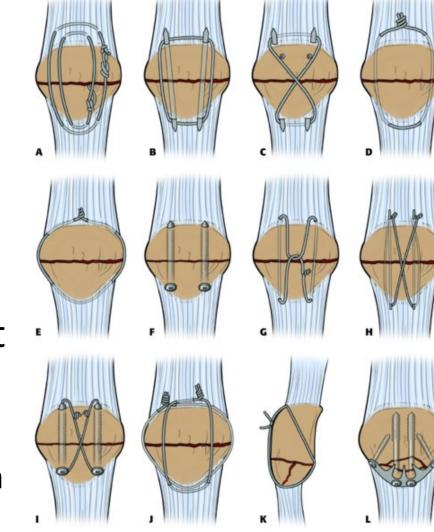
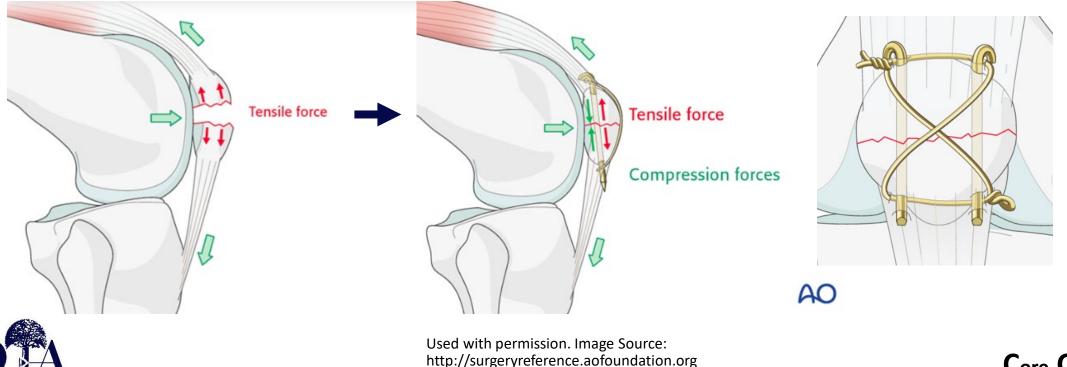



Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-6.

- Tension Band Wire (TBW) Concept:
 - Converting <u>tensile</u> forces (extensor mechanism) into <u>compressive</u> forces (at the fracture site)

- Tension Band Wire (TBW) Concept:
 - Controversial Theory
 - Several Biomechanical Studies refuting this theory

Biomechanical evaluation of the tension band wiring principle. A comparison between two different techniques for transverse patella fracture fixation

Ivan Zderic^{a,*}, Karl Stoffel^{b,c}, Christoph Sommer^d, Dankward Höntzsch^e, Boyko Gueorguiev^a

^a AO Research Institute Davos, Davos, Switzerland ^b Cantonal Hospital Baselland, Bruderholz, Switzerland ^c University of Basel, Basel, Switzerland ^d Cantonal Hospital Graubuenden, Chur, Switzerland ^e BG Klinik Tübingen, Tübingen, Germany

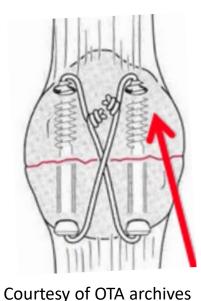
- Tension Band Wire (TBW) Concept:
 - Controversial Theory
 - Several Biomechanical Studies refuting this theory

Conclusions: Tension band wiring fulfills from a biomechanical perspective the requirements for sufficient stability of transverse patella fracture fixation. It should, however, rather be considered as a static fixation principle than a dynamic one. Tension band wiring with cannulated screws was found advantageous over Kirschner wires in terms of interfragmentary movements at the posterior fracture site.

Core Curriculum V5

fracture fixation

Ivan Zderic^{a,*}, Karl Stoffel^{b,c}, Christoph Sommer^d, Dankward Höntzsch^e, Boyko Gueorguiev^a



^a AO Research Institute Davos, Davos, Switzerland ^b Cantonal Hospital Baselland, Bruderholz, Switzerland ^c University of Basel, Basel, Switzerland ^d Cantonal Hospital Graubuenden, Chur, Switzerland ^e BG Klinik Tübingen, Tübingen, Germany

- Tension Band Wire (TBW): Alternative approach:
 - Achieve compression *intra*-operatively with cannulated screws
 - Utilize SS wire or non-absorbable suture to *augment* fixation
 - Wire/Suture acts in <u>"Neutralization" Mode</u>

Make sure screw tips

are buried

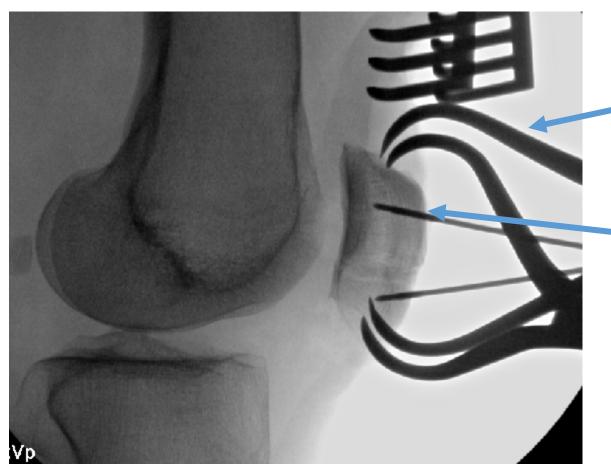
- Wire or suture can be cut by prominent screw tips
- Prominent screws *also* compromise biomechanical stability of screw/TBW constructs (cadaveric study)

- Increased fracture gapping during cyclic loading

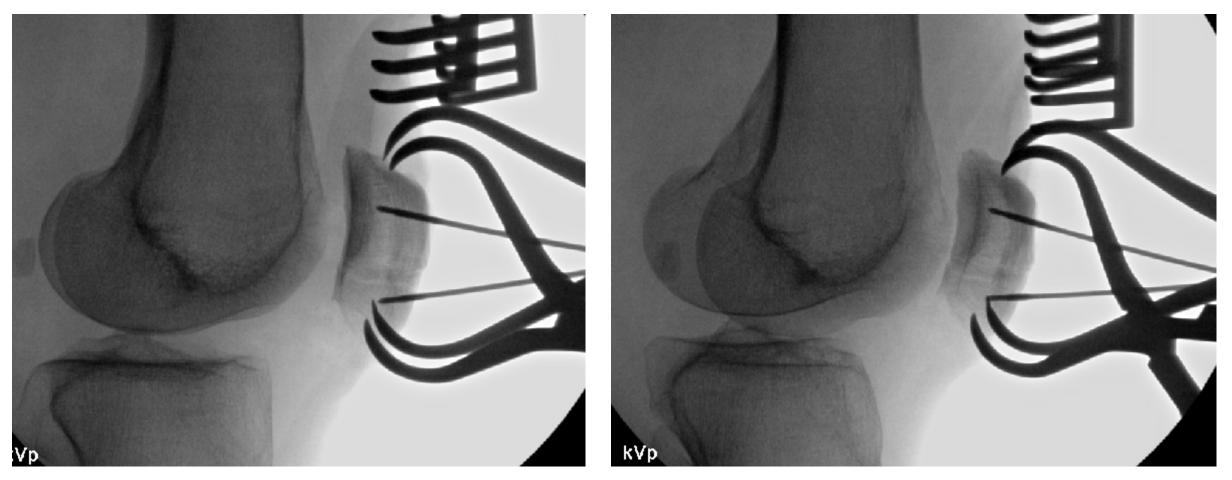
Avery et al. CORR 2019

Case Example: 42yo F, fall while running uphill

• Healthy, active, high-intensity athlete

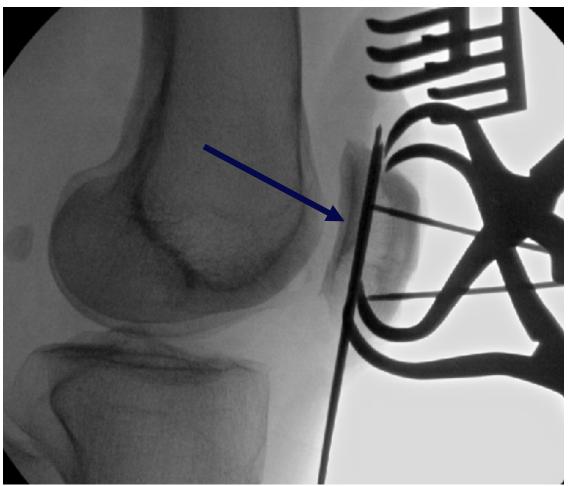

Transverse Patella Fracture

- Pre-operative Plan
 - Reduction Technique(s)
 - examples will be illustrated
 - Implant Choice
 - Traditional TBW?
 - Cannulated screws?
 - "Tension Band" Material
 - 18-gauge wire vs. suture?
 - Soft Tissue Augmentation
 - When is it needed?


Reduction Techniques

- Large pointed reduction
 clamps ("Weber clamps")
 - Generating compression
 - Best to use two clamps
- One K-wire in each fragment
 - Use these as "joysticks"
 - Helps fine-tune reduction rotationally *and* in the sagittal plane

Reduction Techniques – Rotational Views



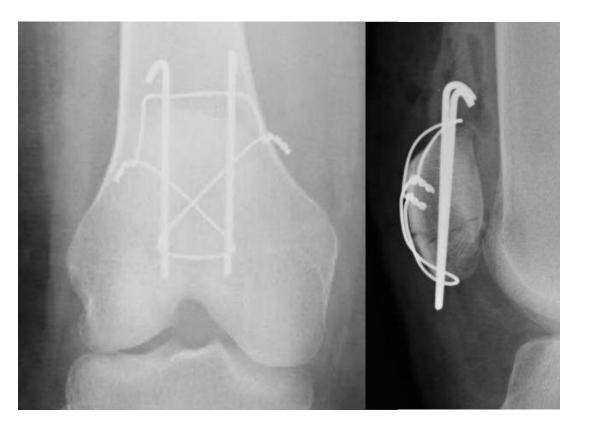
Key Point: Multiple lateral views (int/ext rotation) are critical to assess accurate articular reduction

Core Curriculum V5

Implant Placement

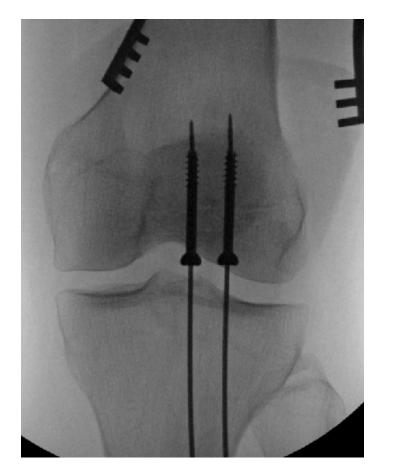
- Place K-wires as posterior as possible
 - Closer to articular surface
 - Biomechanically superior
 - If using traditional TWB:
 - Provides a more *balanced* tension band construct
 - If using cannulated screws:
 - Improved *compression* of articular surface

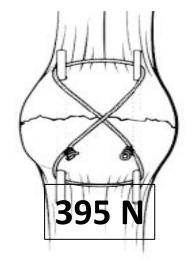
Traditional TBW

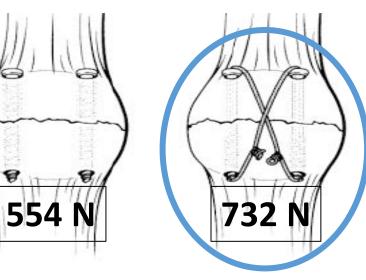

vs. Cannulated Screws?

> Either is fine for *simple* fractures

Core Curriculum V5


Image Source: Smith ST et al. Early Complications in the Operative Treatment of Patellar Fractures, *J Orthop Trauma*. 1997 Apr;11(3):183-7. Fig. 1D.

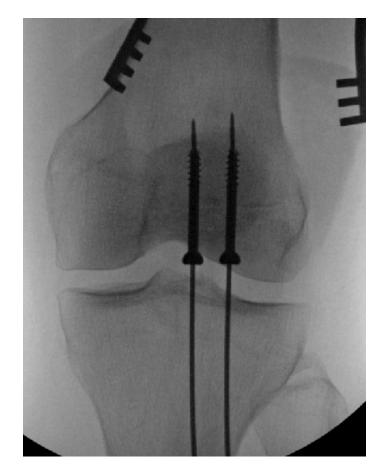

- Traditional Tension Band Wire
 - Advantages:
 - Low-cost
 - Simple, time-tested
 - Disadvantages:
 - Does not generate compression at Fx site
 - Hardware prominence VERY common
 - Implant removal in up to 38% of cases


Gosal et al. Injury, 2001

- Cannulated Screws
 - Advantages:
 - Generates compression at Fx site
 - Higher load to failure than:
 - TWB construct with K-wires
 - Screw fixation alone

Ę

OTA Video Library Link


Image Source: Carpenter JE, et al. Biomechanical evaluation of current patella fracture fixation techniques. *J Orthop Trauma* 1997;11(July(5)):351–60. Fig. 1.

Video

OTA Video Library Link: https://otaonline.org/video-library/45036/procedures-andtechniques/multimedia/16731413/orif-patella-fracture-withtension-band-construct

Cannulated Screws

- Disadvantages:
 - Higher cost
 - Challenge: passing wire/suture through screw
 - No standard screw size recommendation:
 - 4.5 mm
 - 4.0 mm
 - 3.5 mm
 - Pros/Cons of each size
 - Key advantage of 4.5 mm screws:
 - Ability to use commonly available suture passer
 - Easier than Keith Needles

Implant Choice:

Cannulated Screws

- Disadvantages:
 - Dependent on bone quality
 - Hardware prominence may be similar if SS wire is used for the tension band
 - Wire knots still present

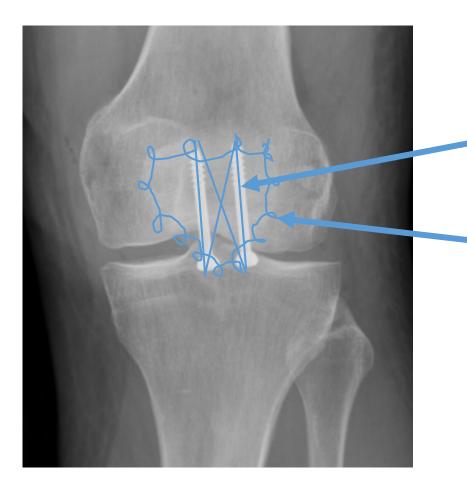
Image Source: Smith et al. JOT 1997. Fig 1D.

Implant Choice:

- If using cannulated screws...
- What to use for the tension band?
 - Suture vs. SS wire?

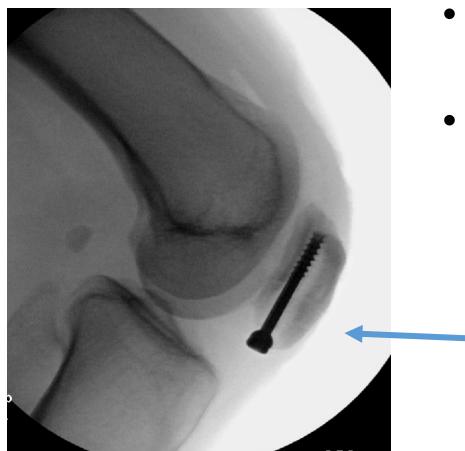
Injury 51 (2020) 473-477

Patella fractures treated with cannulated lag screws and fiberwire® have a high union rate and low rate of implant removal^{*}


Gennadiy Busel^{a,*}, Brett Barrick^b, Darryl Auston^c, Kyle Achor^d, David Watson^d, Ben Maxson^d, Anthony Infante^d, Roy Sanders^d, Hassan R. Mir^d

^a Health Partners, Minneapolis, MN, United States of America

^b Saint Francis Health System, Tulsa, OK, United States of America
 ^c OrthoONE North Suburban Medical Center, Thornton, CO, United States of America
 ^d Horida Orthopaedic Institute, Tampa, FL, United States of America


Implant Choice:

- If using suture for the tension-band
 - Heavy, non-absorbable
- Figure-of-Eight passed through cannulated screws
- Supplemental Cerclage
 - Running, Locking
- Case series of 50 patients
 - 96% rate of union
 - 8% rate of hardware removal

Post-Op Rehabilitation

- No clear consensus
 - Often locked in extension 'til wound heals
- When ROM is allowed...
 - Begin w/ active flexion/passive extension
 - Progressive range (hinged brace useful)
 - Start with a defined ROM limit
 - May use intra-operative fluoroscopic *stress view to determine safe ROM range* for rehab
 - Can progress each week

Anti-gravity flexion

Lateral Fluoro View:

Post-Op Rehabilitation

OA

Anti-gravity flexion

• Post-Op Rehab <u>example</u>...

- Begin *active* flexion/*passive* extension
- Start 0-60 degrees at 6 wks post-op
- Progress 10 degrees/wk from 6-12 wks
- Active extension/strengthening at 12 wks

<u>Complex Patella Fractures – Operative Treatment</u>

- Big Picture:
 - If possible...

try to convert *comminuted* fractures into *simple* fractures

• <u>If not possible...</u> consider *alternative* fixation strategies

OTA Video Library Link

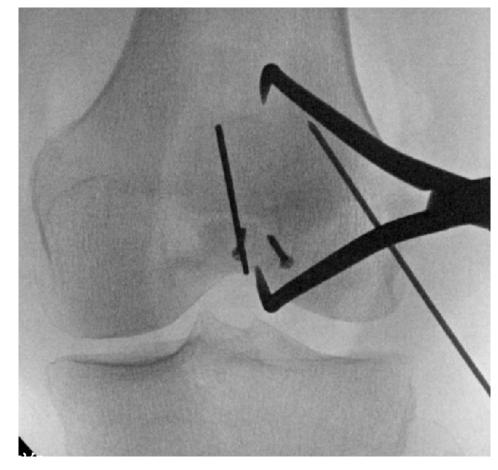
Video

OTA Video Library Link:

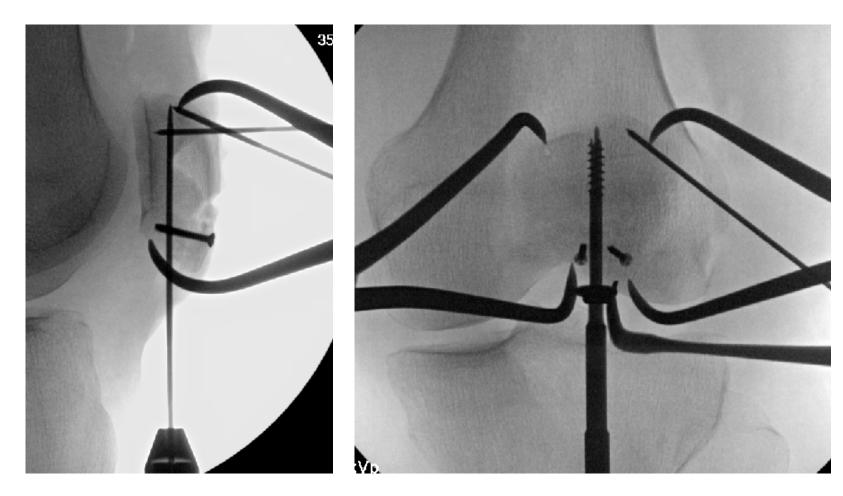
 https://otaonline.org/video-library/45037/annual-meeting-andconferences/multimedia/16845974/comminuted-patella-fractures

Complex Case Example

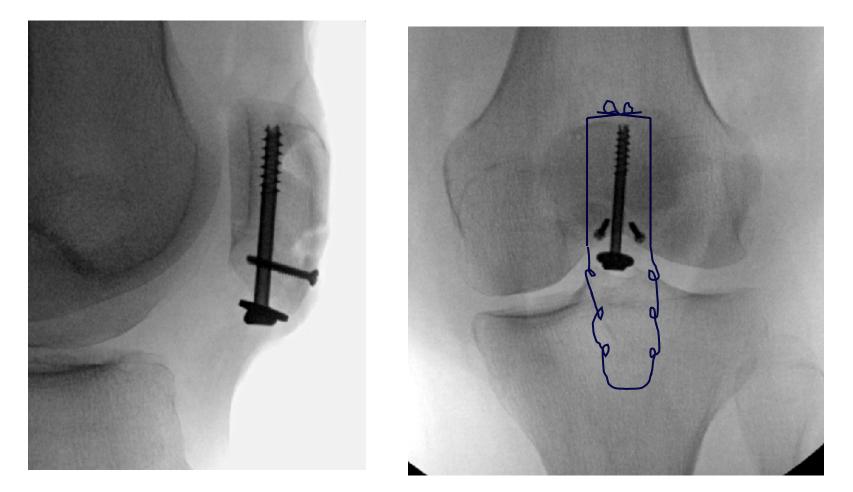
- 57 yo F, fall from standing
- Baseline ambulatory status: normal (independent)



- Treatment options:
 - Non-operative?
 - Partial patellectomy?
 - ORIF?
 - Reduction Technique(s)?
 - Implant Options?
 - "Tension Band" Material?
 - Soft Tissue Augmentation?



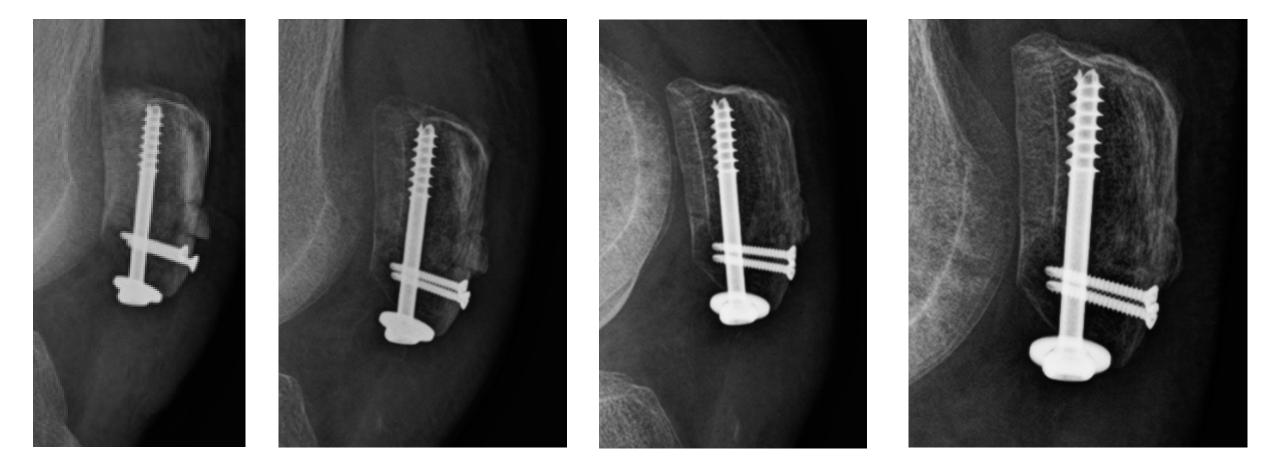
Next Step: How to secure *reconstructed* inferior pole to *intact* superior pole?



Reconstructing the inferior pole: preserves articular congruity

- Bony healing:
 - More reliable than soft tissue healing
 - Use this to your advantage if possible
- Limited real estate
 - Maximize bony stability, but...
 - Augment w/ soft tissue repair techniques

- Incorporate patella tendon into repair
 - Running, locking stitch
 - Sutures passed through bony tunnels
 - Tied over bony bridge (superior patella)



6 wks 3 mo

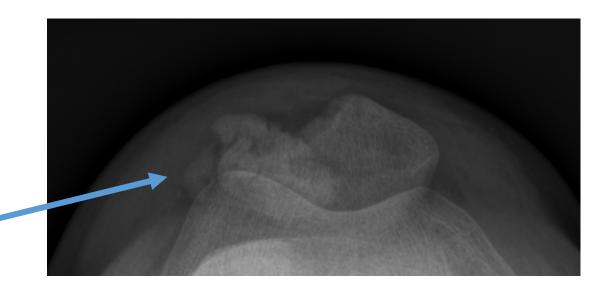
5 mo

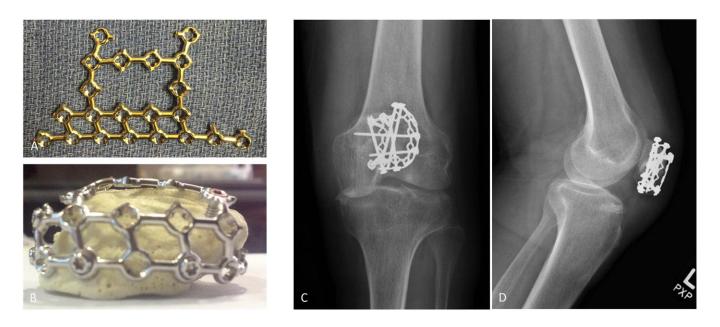
- ROM: 0-130°

- No pain

- Back to baseline function

Complex Case:

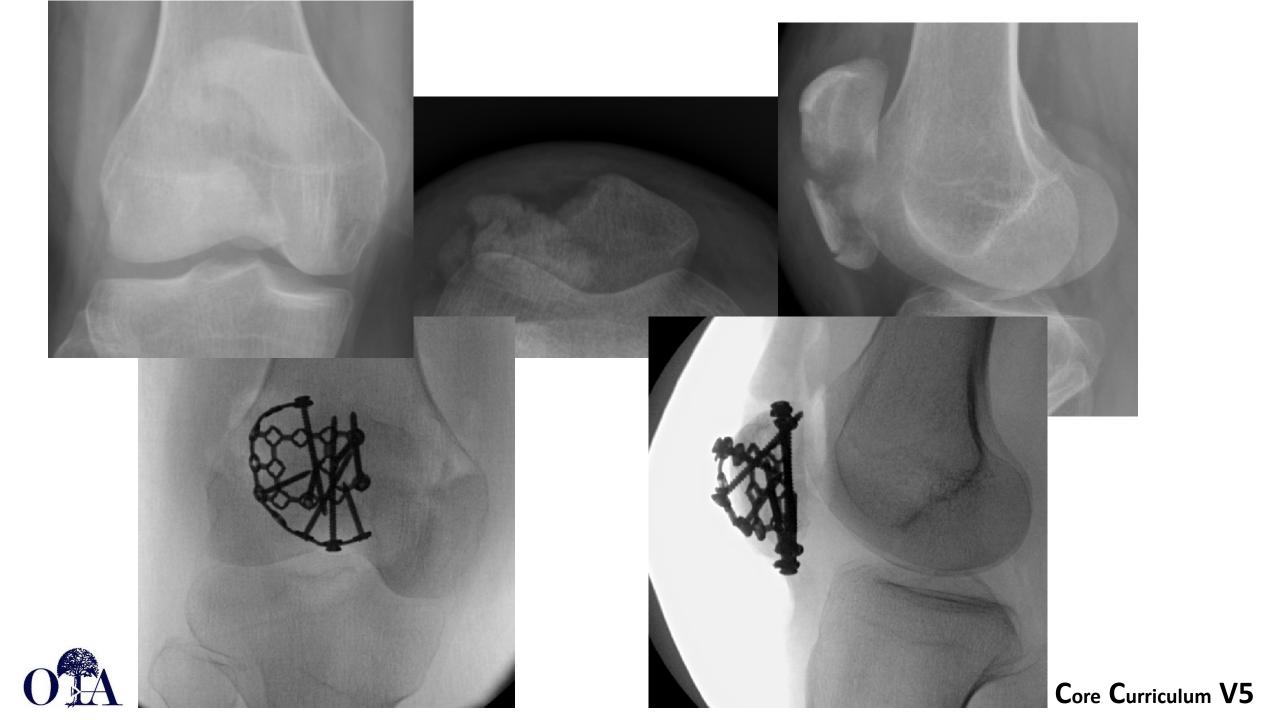

- 35 yo M, fall while running down a hill
- Otherwise healthy



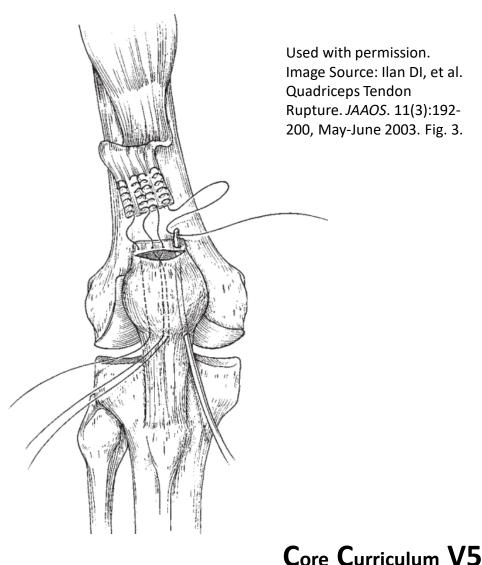
Mesh Plates

- Comminuted Fracture Patterns
- Containment of Small Fracture Fragments
- Customizable
- "Fragment-Specific" Fixation

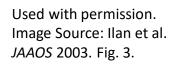
OTA Video Library Link

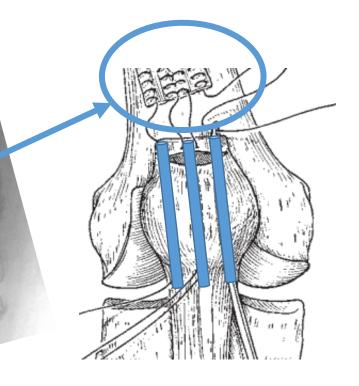

Image Source: Lorich DG, et al. Superior outcomes after operative fixation of patella fractures using a novel plating technique: a prospective cohort study. *J Orthop Trauma*. 2017 May;31(5):241-7. Fig. 1A-D.

Video


OTA Video Library Link: https://otaonline.org/video-library/45036/procedures-andtechniques/multimedia/16731407/low-profile-mesh-plating-forpatella-fractures

Quadriceps & Patella Tendon Repair


- Similar Operative Technique for both
 - Approach:
 - Midline anterior incision
 - Elevate full thickness flaps
 - Identify medial & lateral extent of retinacular tears
 - Repair during closure
 - Debride tendon stump
 - Prepare bony surface
 - Burr or curettes
 - Stimulates tendon-to-bone healing



Quadriceps & Patella Tendon Repair

- Drill bone tunnels
 - 3 (or more) parallel tunnels
 - Suture:
 - Heavy (#2 or #5)
 - Non-absorbable
- Running locking technique
 - Enter tendon from end
 - Up & back medially
 - Up & back laterally
 - 4 strands total

Quadriceps & Patella Tendon Tears

- Pass sutures through bone tunnels
 - Keith needle
 - Suture passer
- Tie sutures down over bony bridge b/w holes
 - 3 holes = 2 knots
 - Augment if needed
 - Cerclage through tibial tubercle
 - Circumferential purse-string suture

Used with permission. Image Source: Ilan et al. JAAOS 2003. Fig. 3. Image Source: Rockwood and Green's Fractures in Adults, 9th Edition, Fig. 59-9.

Special Considerations: Patella Tendon Injuries

- Tiny inferior pole fractures:
 - Usually non-articular
 - Often too small to fix
- Preferred Treatment:
 - Fragment excision with patella tendon advancement (essentially converting this to a patella tendon repair)

Video

Video Link: https://otaonline.org/video-library/45036/procedures-andtechniques/multimedia/16731411/suture-repair-of-pole-patellafracture

Special Considerations: Patella Tendon Injuries

- Inferior pole fragment excision w/ patella tendon advancement:
 - Make sure to attach tendon *closer* to anterior cortex
 - Better reproduces normal anatomy
 - Posterior attachment causes patellar rotation/maltracking

Quadriceps & Patella Tendon Tears

- Summary:
 - Prepare tendon & bone
 - Parallel drill tunnels
 - Heavy non-absorbable suture
 - Running-locking suture
 - Sutures through drill tunnels
 - Tie over bony bridge
 - Retinacular repair
 - Augment if needed using cerclage/purse-string
 - Alternative: suture anchors

Used with permission. Image Source: Ilan et al. *JAAOS* 2003. Fig. 3.

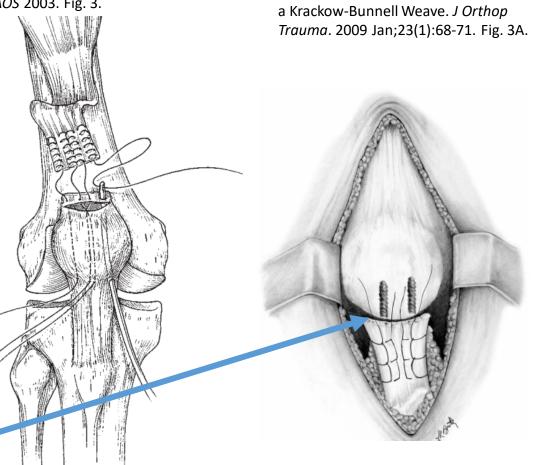


Image Source: Gaines RJ et al. Patellar

Using a Combined Suture Technique of

Tendon Repair with Suture Anchors

Complications - Common

- Hardware prominence/pain
 - VERY common (up to 60%)
 - Often require reoperation for hardware removal
 - Implant-dependent:
 - Highest rates with traditional Tension Band Wire construct (using 18G stainless steel wire)
 - Lower rate (8%) with cannulated screws + suture tension band

<u>Complications – Less Common</u>

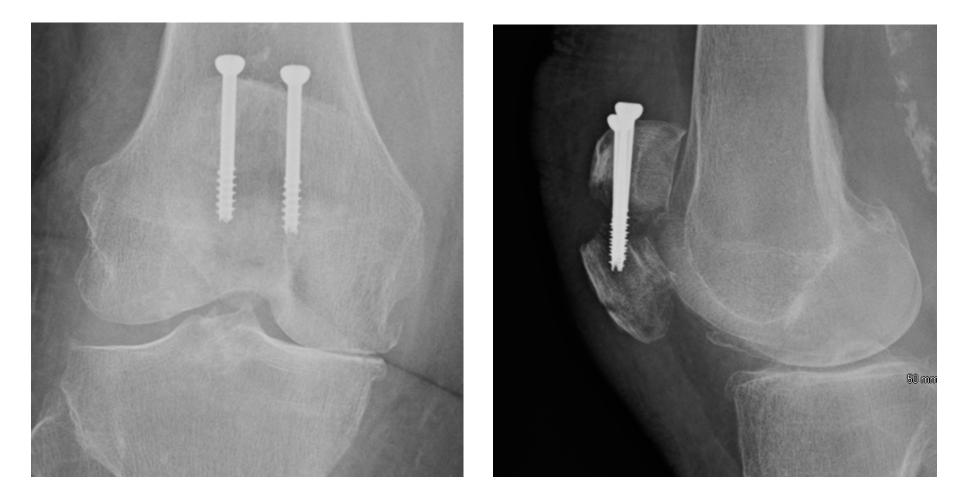
- Extensor mechanism weakness
 - Common, but often very minor
 - 2-4cm loss of terminal extension
 - Extreme: total patellectomy:
 - 49% loss of quadriceps strength
- Knee stiffness
 - Typically can be prevented by early ROM
 - If unable to reach 90° of flexion by ~8wks, consider intervention:
 - Closed manipulation under anesthesia
 - +/- arthroscopic lysis of adhesions
 - Quadriceps-plasty in extreme cases.

Complications - Uncommon

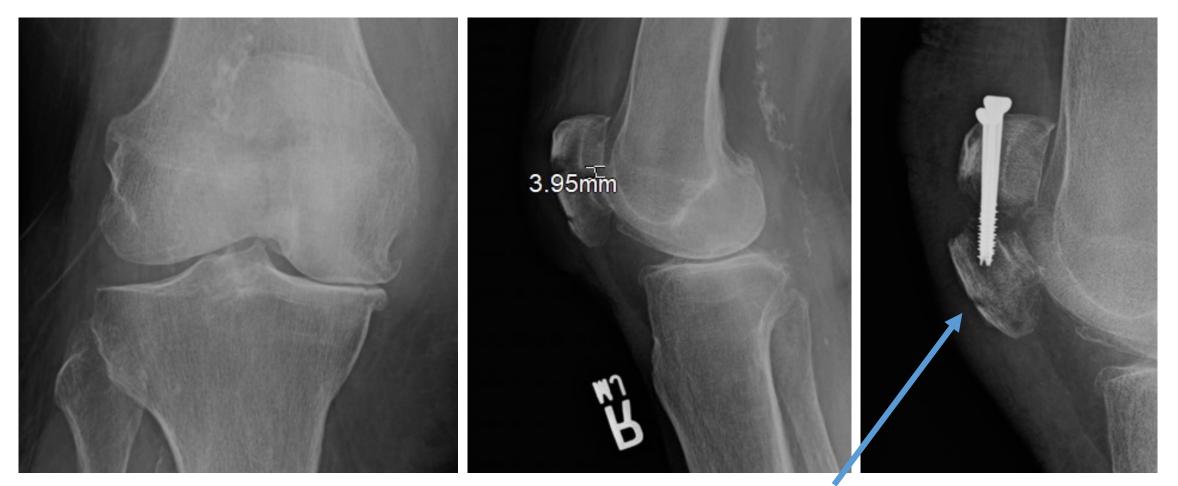
- Infection/wound complications
 - < <5% in most series
 - Up to 11% in open fractures
- Non-union
 - < 1% in most series
 - Up to 7% in open fractures
- Post-traumatic patello-femoral arthritis
 - Higher with partial patellectomy than with ORIF

Complications - Uncommon

- In rare cases, total patellectomy may be required:
 - Highly comminuted fractures
 - Severe infection or tumor
 - Failed internal fixation
 - Post-traumatic arthritis
- VMO advancement technique
 - Improved strength & functional outcomes vs. std patellectomy


Complications - Uncommon

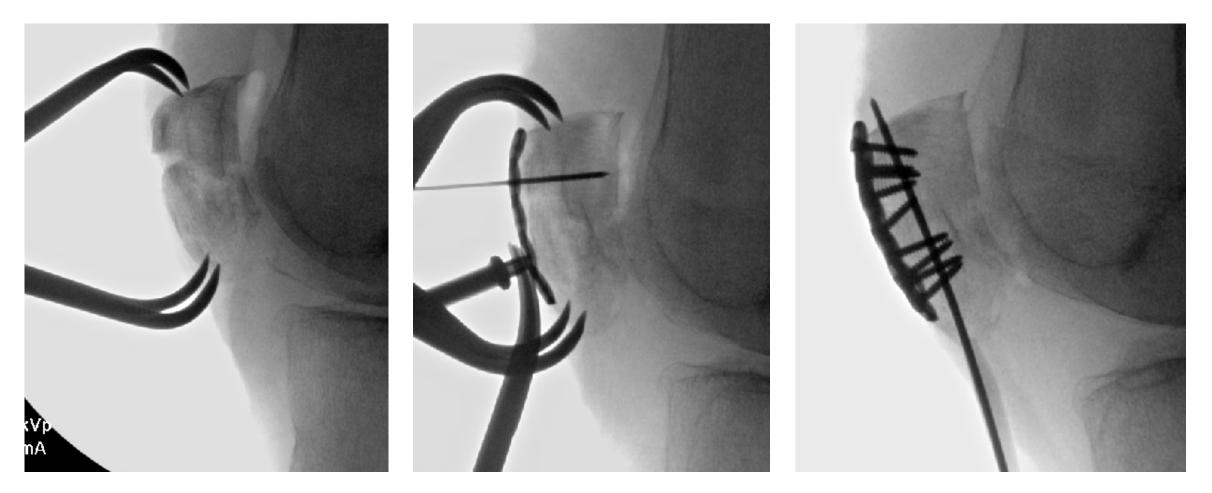
- Re-fracture
- Re-rupture
- Loss of reduction/failure of fixation
 - Reported range of 0-20% in literature
 - Risk Factors:
 - Severe comminution
 - Osteopenia/Osteoporosis
 - Inadequate fixation
 - Overly aggressive physical therapy
 - Patient non-compliance
 - Illustrative case next...


88 yo F – s/p patella ORIF 6 wks ago

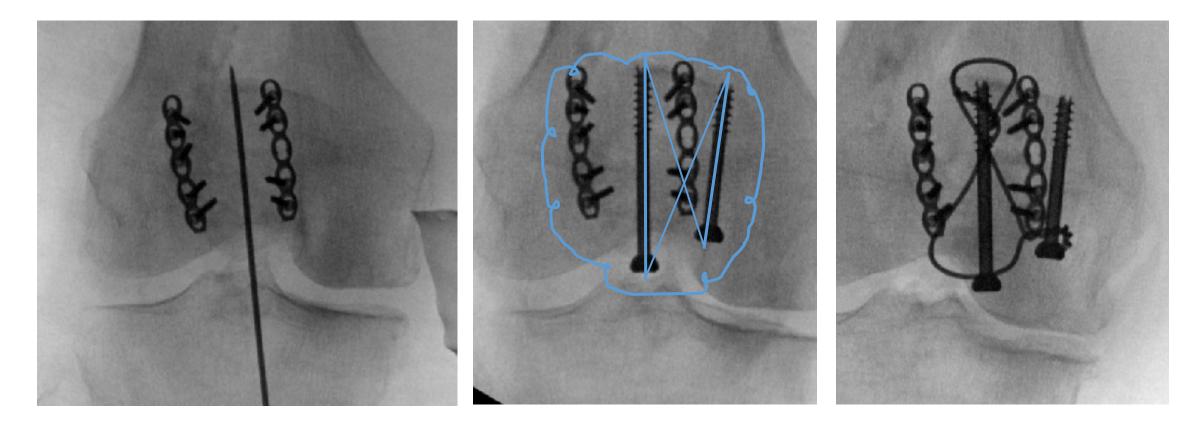
Core Curriculum V5

Injury Films (from outside hospital)

On today's X-rays, the inferior pole fracture is healing well

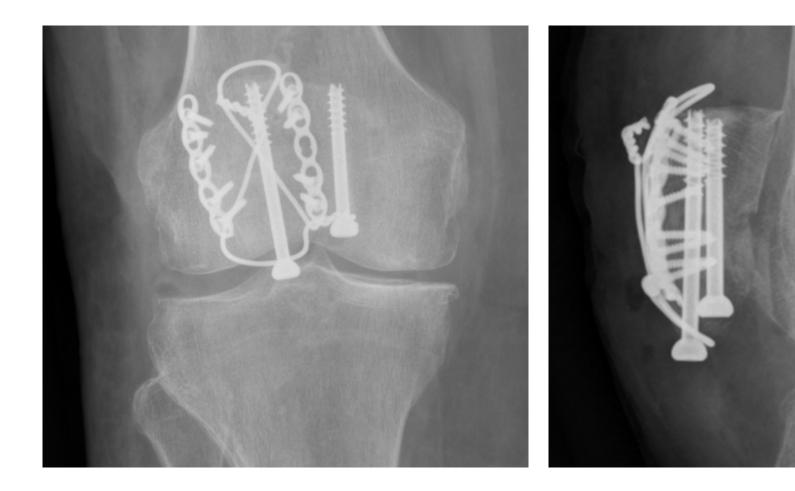

88 yo F, 6 wks s/p failed patella ORIF

- Treatment Plan?
 - Fracture Reduction
 - (Nonunion preparation)
 - Implant Options?
 - How to generate compression?
 - Soft Tissue Augmentation?
 - How? What materials?
 - Bone Grafting?
 - If so, what type?


Fluoro Images

<u>Key Point</u>: With clamps compressing *posteriorly*, plates can compress *anteriorly*

Fluoro Images



Ę

<u>Key Point</u>: Revision fixation with poor bone quality: augment as much as possible!

Post-Op Images

Rehab Protocol:

-

- Post-op WB status?
- Brace? What kind?
 - ROM? If so, what range?

Ę

Follow-up: 2 & 6 wks

- 2 wks:
 - Sutures out
 - X-rays (to ensure no unexpected early failure of fixation)
- 6 wks:
 - Fracture healing
 - Started active flexion/ passive extension

Follow-Up:

- ROM:
 - 3 mo: 0-94°
 - 6 mo: 0-110°
 - Back to baseline function

3 months

6 months

Failed Fixation: Take Home Points

- Construct stability is the priority
 - Revision, poor bone quality
- Generating compression:
 - Anterior plates (alternative: mesh plate)
 - Screws
- Soft Tissue Augmentation
 - Figure-of-eight: suture + tension-band wire
 - Purse-string suture
- Rehab Protocol:
 - Conservative in setting of revision

Overview & Objectives

- ✓ Epidemiology & Mechanism of Injury
- ✓ Anatomy & Biomechanics
- ✓ Diagnosis & Classification
- ✓ Non-Operative Treatment
- ✓ Operative Treatment
 - ✓ Patella Fractures: Simple & Complex
 - ✓ Quad/Patella Tendon Injuries
- ✓ Complications
- ✓ Summary/Key Points

<u>Summary – Patella/Extensor Mechanism Injuries</u>

- *Most* require operative treatment
- Significant *tensile* forces must be overcome by fixation construct
- Simple transverse fractures surgeon preference
 - traditional TWB or cannulated screws can provide reliable outcomes
- Complex fractures maximize bony stability, augment w/ soft tissue
- Quadriceps & Patella Tendon Injuries drill tunnels/suture repair
- Revision fixation Generate compression, combine fixation methods
 - Augment w/ soft tissues & use conservative rehab protocol
- Complications Symptomatic hardware most common (up to 60%)
 - Implant-dependent

<u>References</u>

- Melvin, Stuart J.; Mehta, Samir. "Patellar Fractures in Adults." Journal of the American Academy of Orthopaedic Surgeons. 19(4):198-207, April 2011.
- Lack WD and Karunakar MA. "Patellar Fractures and Dislocations and Extensor Mechanism Injuries." In Tornetta P 3rd, et al., Eds. Rockwood and Green's Fractures in Adults, 9th Ed. Philadelphia: Wolters Kluwer. 2020. pp. 2537-2573.
- Bui, Christopher N. MD; Learned, James R. MD; Scolaro, John A. MD, MA, Treatment of Patellar Fractures and Injuries to the Extensor Mechanism of the Knee, *JBJS Reviews*: October 2018 Volume 6 Issue 10 p e1.
- Carpenter JE , Kasman RA , Patel N , et al. Biomechanical evaluation of current patella fracture fixation techniques. *J Orthop Trauma* 1997;11(July(5)):351–60 .
- Lorich DG, Fabricant PD, Sauro G, Lazaro LE, Thacher RR, Garner MR, Warner SJ. Superior outcomes after operative fixation of patella fractures using a novel plating technique: a prospective cohort study. *J Orthop Trauma*. 2017 May;31(5):241-7.
- Busel G, Barrick B, Auston D, Achor K, Watson D, Maxson B, Infante A, Sanders R, Mir HR. Patella fractures treated with cannulated lag screws and fiberwire have a high union rate and low rate of implant removal. *Injury*. 2020 Feb;51(2):473-477.
- Avery MC, Jo S, Chang A, Ricci WM, McAndrew C, Miller AN, Tang S "Cannulated screw prominence in tension band wiring of patella fractures increases fracture gapping: a cadaveric study." *Clin Orthop Rel Res* 2019 477(5): 1249-1255.
- Yang Tien-Yu, Huang Tsan-Wen, Chuang Po-Yao, Huang Kuo-Chin "Treatment of displaced transverse fractures of the patella: modified tension band wiring technique with or without augmented circumferential cerclage wire fixation." *BMC Musculoskelet Disord* 2018 19:167.
- Ling M, Zhan S, Jiang D, Hu H, Zhang C "Where should Kirschner wires be placed when fixing patella fracture with modified tension-band wiring? A finite element analysis." *J Orthop Surg Res* 2019 14:14.
- Gosal HS, Singh P, Field RE. Clinical experience of patellar fracture fixation using metal wire or non-absorbable polyester-a study of 37 cases. Injury 2001;32:129–35.
- Ilan, Doron I.; Tejwani, Nirmal; Keschner, Mitchell; Leibman, Matthew; "Quadriceps Tendon Rupture." *Journal of the American Academy of Orthopaedic Surgeons.* 11(3):192-200, May-June 2003.

