Tibial Plateau Fractures

John J. Wixted MD

Chief, Orthopedic Trauma Division

Beth Israel Deaconess Medical Center

Disclosure

- Clinical images provided by the author.
- Figures used with permission from Tornetta P, Ricci WM, eds. Rockwood and Green's Fractures in Adults, 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

<u>Objectives</u>

- Describe initial evaluation and management of tibial plateau fractures
- Identify common fracture patterns
- Apply treatment principles and strategies
 - Partial articular fractures
 - Complete articular fractures
- Discuss rehabilitation, complications, and outcomes

<u>Objectives</u>

- Describe initial evaluation and management of tibial plateau fractures
- Identify common fracture patterns
- Apply treatment principles and strategies
 - Partial articular fractures
 - Complete articular fractures
- Discuss rehabilitation, complications, and outcomes

Plateau Fractures: Initial Presentation

- 1-2% of all fractures
- Similar bimodal distribution to many peri-articular injuries
- 70% in young adult men, average age 43

These two figures represent the spectrum of injuries seen in tibial plateau fractures.

A: A low-energy lateral plateau fracture in a 37-year-old male who missed a step and fell which was treated nonoperatively. **B:** High-energy bicondylar tibial plateau fracture in a 42-year-old man who sustained a motor vehicle crash that was treated initially with an external fixator followed by definitive fixation with bicondylar plating.

Age and mechanism dictate injury pattern

- -Middle age and elderly with simple falls
 - -commonly split depressed patterns, or less common isolated medial side injuries
- -Higher energy or sports related
 - -pure split injuries, or rim injuries with associated ligamentous injuries to the knee and potential for instability
- -High energy MVA, fall from height, pedestrians struck
 - -Often younger patients
 - -bicondylar patterns
 - -higher risk for neurovascular injury
 - -compartment syndrome and open fractures common

<u>Initial presentation – mechanism matters!</u>

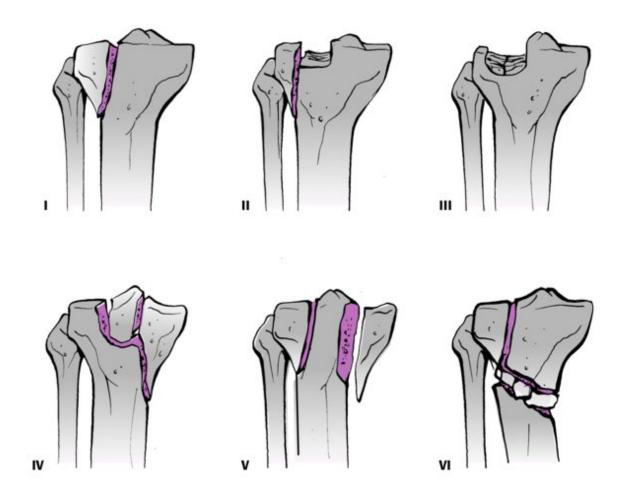
- Lower energy
- Simple falls, struck from side
- Remain length stable

- Higher energy
- Axial load, associated shearing
- Compartment syndrome risk

Initial Management

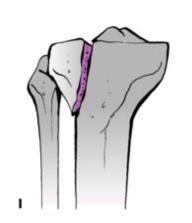
- Physical exam
 - Swelling compartment syndrome
 - Distal pulses vascular injury
 - ?ABIs
 - Valgus Instability?
- Splinting
 - Knee immobilizer
 - Compartment checks
 - DVT Prophylaxsis

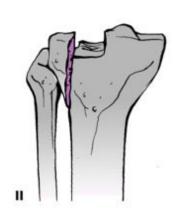
- Imaging
 - CT scan routinely obtained
 - Plain films
 - MRI for occult or suspected fractures, particularly in the elderly
 - Fracture-dislocation patterns: high risk for ligamentous damage, MRI indicated
 - Think about need for MRI prior to placing ex fix! Save yourself some phone calls!

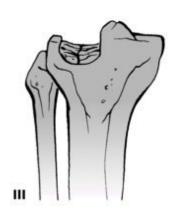


Objectives

- Describe initial evaluation and management of tibial plateau fractures
- Identify common fracture patterns
- Apply treatment principles and strategies
 - Partial articular fractures
 - Complete articular fractures
- Discuss rehabilitation, complications, and outcomes


Schatzker Classification



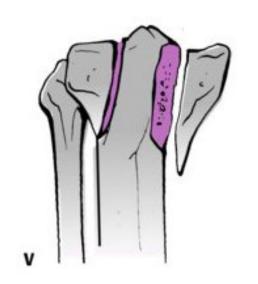


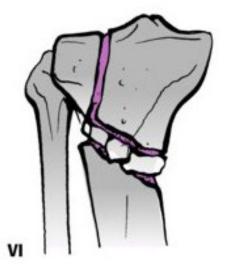
Schatzker Classification: Injuries isolated to the lateral plateau

- I: Younger patients, better bone quality
- II: Higher energy, with associated depression of the lateral chondral surface
- III: Poor quality bone in elderly patients
- Most common patterns

Schatzker Classification: Isolated medial fractures come in two flavors

- Lower energy, elderly
- Simple depression
- Varus loading
- Fracture lines exit medial to spines


- Higher energy, young patients
- Medial shearing
- Higher risk for vascular injuries
- Fracture lines exit lateral to spines
- Called "fracture dislocation" variants



Schztzker Classification: Bicondylar injuries

- Typically higher energy
- Compartment syndrome risk
- Vascular exam a must
 - Consider ABIs
- Commonly open
- Soft tissues at risk
- Exam will progress over hours and often worsen with time
- Includes varus hyperextension Bicondylar variant*

OTA Classification

- Uniform classification
- Captures all variants
- A: Extra articular
- B: Partial Articular
- C: Complete Articular

OTA/AO Classification of Tibial Plateau Fractures

Classification	Description
• Type A	Technically, these are not classified as plateau fractures as the articular surface is not involved; they can be labeled as proximal tibia fractures
Type B	Includes both medial and lateral plateau fractures
B1	Simple articular split
B2	Split and depression of the articular fragment
В3	Comminuted split and depression
• Type C	Complex articular fractures and frequently called bicondylar tibial plateau fractures
C1	Noncomminuted total articular fractures
C2	Noncomminuted articular fractures with metaphyseal comminution
C3	Comminuted articular fractures with metaphyseal comminution

<u>Important Variants – Open injuries</u>

Open injuries

-antibiotics: ASAP

-tetanus

-vascular exam

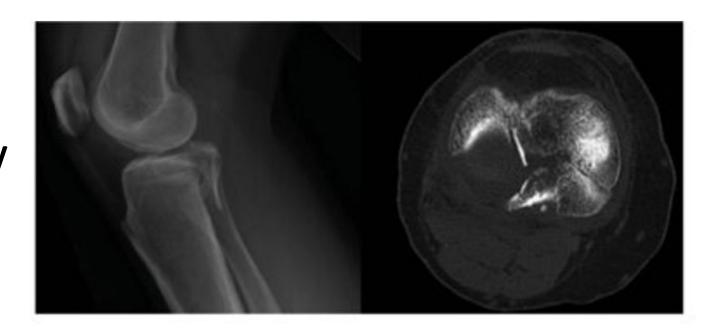
Present challenges for coverage

Shaft extension

Early coverage within 72 hrs decreases late infection rate

Fracture Dislocation patterns

- High energy
- Frequently with medial displacement and shortening
- High association with vascular injury
- Subluxation or dislocation thru the fracture causes traction injury to the vessels
- Don't always "fit" Schatzker
- Hohl and Moore Classification may be more descriptive



Posterior Shear Patterns

- Commonly posteromedial patterns
- "B-type" partial articular injury to the medial plateau
- Often associated with bicondylar patterns and less commonly isolated fracture; lateral side seen as well

Three Column Concept of Plateau Fractures

- Evolution of the Schatzker Classification
- Better incorporates fractures involving posterior plateau
- Help with determining appropriate fixation strategy

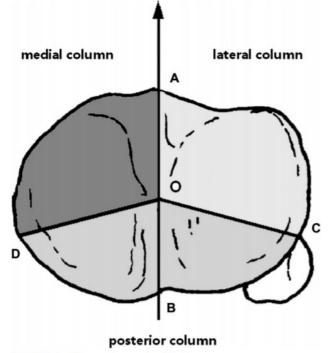


FIGURE 1. Three-column classification.

<u>Objectives</u>

- Describe initial evaluation and management of tibial plateau fractures
- Identify common fracture patterns
- Apply treatment principles and strategies
 - Partial articular fractures
 - Complete articular fractures
- Discuss rehabilitation, complications, and outcomes

General Principles for Plateau Treatment

- Fracture location and classification generally dictate approach
- Anterolateral, posteromedial, direct medial most common
- Visualization of the fracture key for articular reduction
 - Direct visualization; ie anterolateral with submeniscal approach
 - Fluroscopic; ie minimally invasive reduction and plating
 - Arthroscopic; in conjunction with fluoroscopic
- Use of temporary external fixation may be considered
- Fractures which are length stable can be safely delayed with bracing alone

Nonoperative treatment: Indications and contraindications

Indications	Relative Contraindications
 Undisplaced or minimally displaced fractures Small depressions of the lateral plateau without deformity or instability on clinical exam Significant medical comorbidities that preclude surgical treatment Elderly patients with low functional demands in whom subtle deformities are tolerated 	 Knee instability Greater displacement where deformity is easily predictable Displaced medial-side injuries

Nonoperative management

- Valgus instability 5-10 degrees
- Articular step-off threshold is controversial
- Isolated medial injuries: late varus collapse
- In general, small isolated lateral injuries without valgus instability
- Early ROM, limited wb x 8-12 weeks, +/- bracing
- Angular malalignment poorly tolerated

Goals of Surgical Fixation – plateau fractures

- Restore alignment
 - Coronal
 - Sagittal
 - Slope
- Normal Condylar width
- Fully stable knee
- Congruent Articular Surfacte

Lateral Plateau Fixation

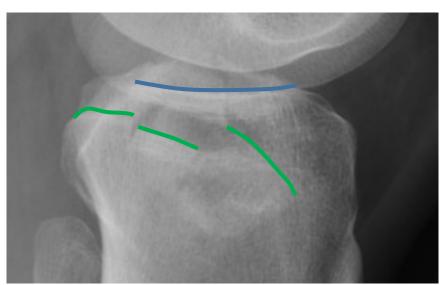
- Most common fracture pattern
- Anterolateral approach
- Key steps:
 - Anterolateral approach
 - Submeniscal arthrotomy
 - +/- distractor if needed
 - "book open" the split portion
 - Reduce the depressed articular segment and provisionally stabilize with K-wires
 - Fill voids as necessary
 - Reduce the split portion
 - Apply rafting screws and/or lateral plate

Click below for video link

Online Trauma Access

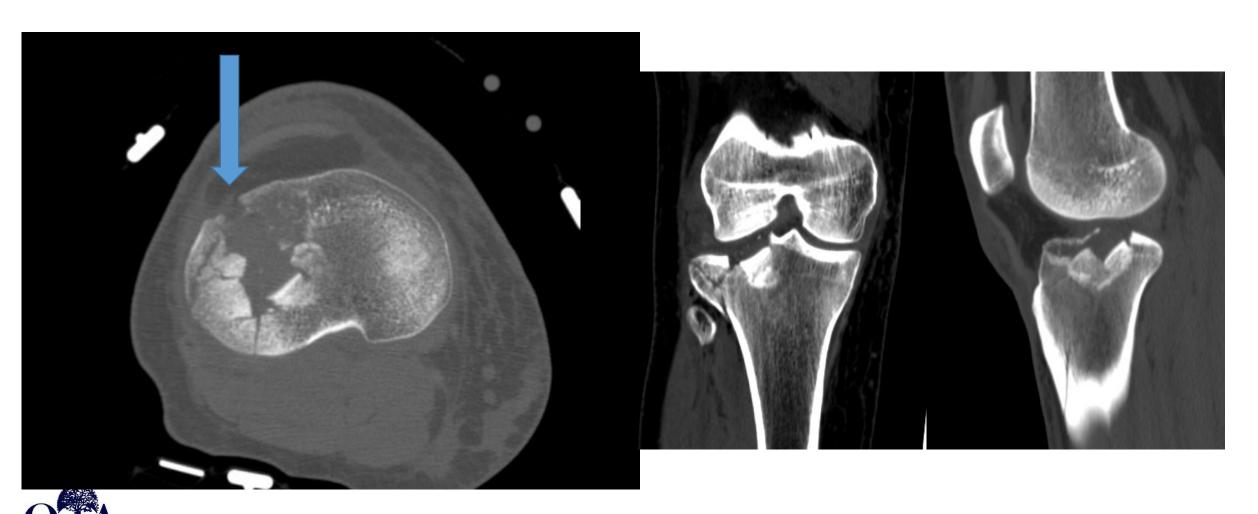
Anterolateral Approach for the Treatment of Tibial Plateau Fractures

Mark Hake, Rajbir Hundal, Jacob Kirsch, Michael Yee



Lateral Plateau Fixation

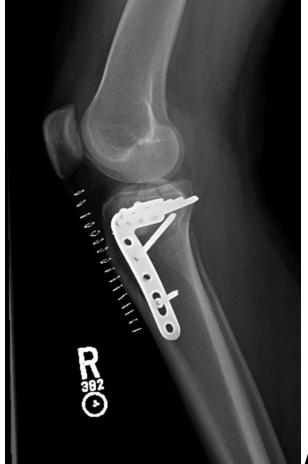
 Healthy, active 48 year old woman fell off scooter



Core Curriculum V5

CT Imaging – axial cuts demonstrate approach

Anterolateral approach – visualize + reduce



Postoperative Care

- Early ROM trust your fixation
- Protected WB
 - 8 weeks tdwb, then adv to wbat over weeks 8-12
- Bracing?
- DVT prophylaxis

Isolated medial injuries

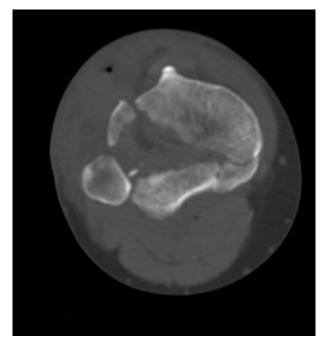
- Much less common
- Posteromedial approach
- Key steps:
 - Generally buttress at the apex
 - Prone vs supine?
 - Supine simple, allows for anterolateral approach, also adds significant rotation and varus often thru the fracture in bicondylar injuries
 - Posterior inconvenient, but fewer deforming forces, simplifies fixation
 - Direct approach to apex
 - Indirect reduction at joint line
 - Fluroscopic reduction key
 - With Medial surface impaction can perform submeniscal arthrotomy to visualize the surface

Isolated medial injuries – prevent late varus

Lobenhoffer approach – interval between hamstring and medial head of the gastroc

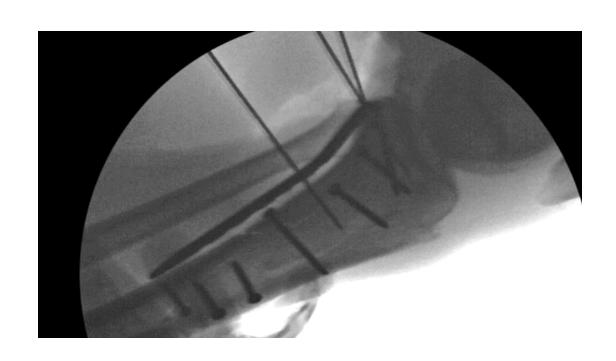
More complex injuries...bicondylar plateau

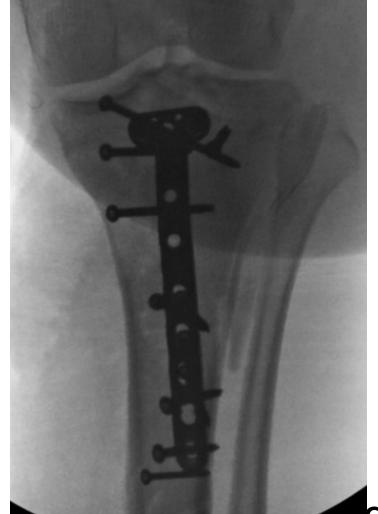
- -Neurovacular checks are crucial
- -Exam can evolve
- -applying external fixation can change the vascular exam
- -restoring length can increase compartment pressure as well





Extensile posteromedial approach

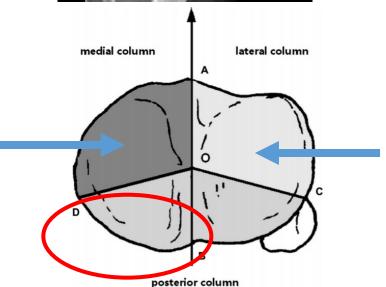

- Standard Lobenhoffer approach with an extended proximal limb
- Isolate the medial head of the gastroc at its femoral insertion
- Release the medial head
- Provides access to a portion of the posterolateral plateau as well



Extensile posteromedial approach - prone

Core Curriculum V5

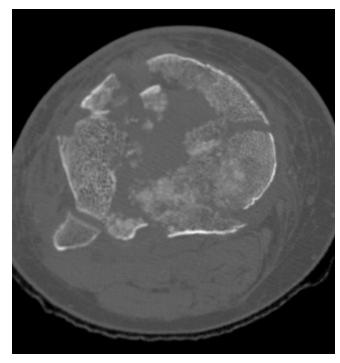
Second approach – anterolateral supine



Bicondylar plateau – medial decision making

- Medial side
 - ? Posterior shear = posterior buttress
 - ? Unstable medial column = direct medial plating
 - Axial CT scans helpful
 - Fixing from medial or lateral alone may entirely miss posteromedial fragments! Think three columns!
 - Buttress posterior fractures at the apex!

External fixation and 4 compartment fasciotomies required



<u>Bicondylar plateau – medial decision making: CT scan after external</u>

fixation applied

Requires bicondylar plating – with direct medial plating, not posteromedial!

Medial side – limited proximal exposure and bridging distally

- Medial first
- Established length
- Anterolateral
- Clamp the two plates together
- -Axial alignment
- -condylar width
- -joint congruity

Bridge plating techniques

- It the fracture a plateau, that extends into the shaft – or is it a shaft that happens to extend into the plateau?
- Simple fracture lines call for anatomic reduction
- Percutaneous bridge plating used for more comminuted diaphyseal fractures with proximal extension
- Can the joint be reduced without a direct approach?
- Is an IM nail in conjunction with plating beneficial?

Click below for video link

Online Trauma Access

Bridge Plating of Proximal Tibia Metaphyseal Fracture by Limited Open Technique

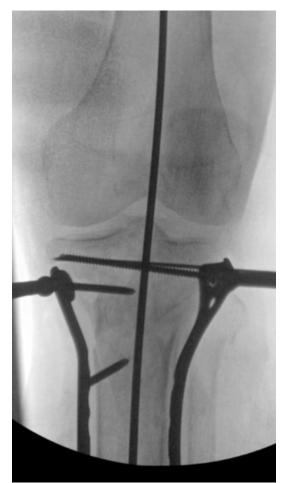
Michael Gardner, Benjamin Pulley

Associated shaft and plateau – combining techniques

- Presents in extremis
- Bilateral open tibias
- Associated bicondylar plateau on the left
- Emergent ex fix and VAC
- Returns for fixation HD
 2 in anticipation of
 free flap HD 3

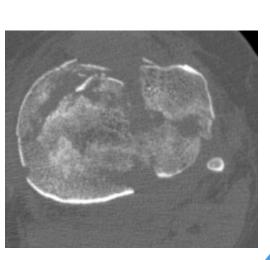


Limited anterolateral approach, percutaneous medial fixation, suprpatellar nailing



Limited plating, nail inserted, screws added

3 year f/u



Bicondylar plateau – hyperextension mechanism from trampoline


HIGH RISK FOR NEUROVASCULAR INJURY!

Hyperextension causes anterior slope

Plan for bicondylar plating, direct medial

- External fixator applied
- "Travelling traction"
- Anterolateral approach
 - Medial extension deformity corrected with elevator from the anterolateral side
 - Second posteromedial approach allows for correction of the posterior translation of the plateau
 - Dual plating lateral and medial

Elevate slope!

Final correction

<u>Objectives</u>

- Describe initial evaluation and management of tibial plateau fractures
- Identify common fracture patterns
- Apply treatment principles and strategies
 - Partial articular fractures
 - Complete articular fractures
- Discuss rehabilitation, complications, and outcomes

Rehabilitation

- Post op protocols:
 - Can vary by fracture severity
 - Goal of surgery allow for complete ROM immediately postop
 - Unlocked hinged knee brace commonly used
 - Consider appropriate DVT prophylaxis
 - Touch down WB 8 weeks
 - Advance after 8 weeks depending on severity
 - Quad sets, isometrics important

Complications

- Pre or postop compartment syndrome (increases with complexity of injury)
- Can release anterior compartment easily from anterolateral approach
- Infections more common after compartment release
- Medial plating prevents late varus collapse
- Residual valgus common with isolated lateral injuries

Tibial Plateau Fractures: Common Adverse Outcomes and Complications

- Loss of reduction
- · Wound breakdown and infection
- · Septic arthritis after external fixation
- · Knee stiffness
- · Prominent or painful hardware
- · Nonunion or delayed union
- · Posttraumatic arthritis

Conclusions

- Systematic approach to initial presentation
 - Evaluate neurovascular exam
 - Consider compartment syndrome
 - Evaluate in light of age and mechanism
- Operative goals
 - Axial alignment, condylar width, joint congruity
- Key Steps
 - Plan the approach, reduce the articular block, fill voids as necessary, reestablish length and alignment
 - Medial fixation: Direct medial or posteromedial buttress?
 - Bicondylar fixation: Bridge plating helpful for comminuted metaphyseal or diaphyseal extension injuries

