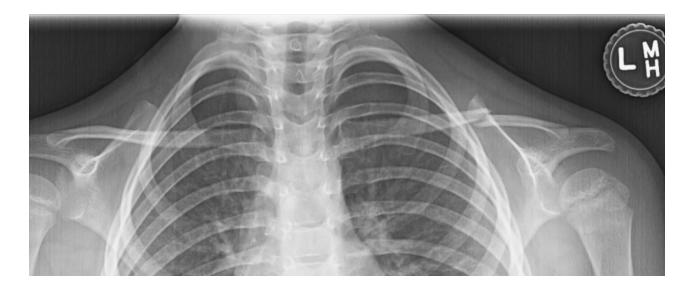
Pediatric Fractures of the Shoulder and Humerus

David Weisman MD, John Ghazi MD, Steven Mennona MD, Daniel Mascarenhas MD

Rutgers RWJMS Dept of Orthopaedic Surgery

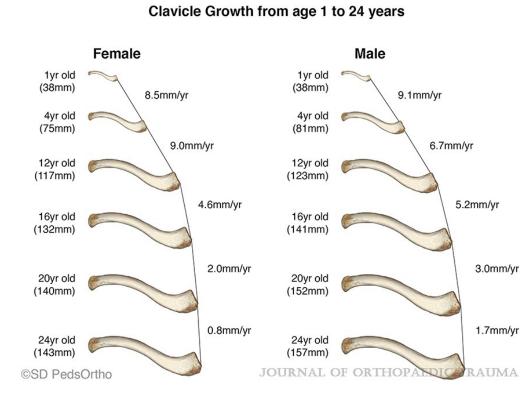
Diclaimer

• All clinical and radiographic images provided are used with permission of David Wiseman, MD or Chris Souder, MD unless otherwise specified

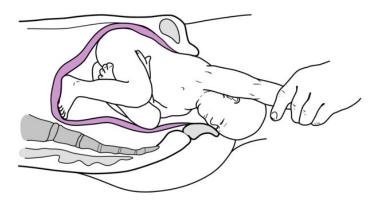

Pediatric Clavicle Fractures

- Objectives-
 - Epidemiology of Pediatric Clavicle Fractures
 - Key physical exam findings
 - Treatment recommendations

Pediatric Clavicle Fractures


- Clavicle fractures represent 5-15% of all pediatric fractures
 - Midshaft is the most common location (80%)
 - 15% lateral, 5% medial

Anatomy


- Clavicular diaphysis is the first bone to ossify in utero
- Medial epiphysis is one of last centers to fuse
- Highest rates of growth occur by 12 years of age
 - Growth can continue into early 20s
 - Significant remodeling potential
- Thick periosteum leads to decreased nonunion rates

Mechanism of Injury

- Common in all stages of childhood
- Mechanism varies depending on age
 - Neonatal \rightarrow difficult delivery
 - Large gestational age
 - Shoulder dystocia
 - Right clavicle more common than left
 - Likely related to lateral shoulder compression during delivery
 - 0.5% of normal deliveries, 1.6% of breech deliveries
 - Toddlers \rightarrow Fall from height
 - Must consider child abuse

Mechanism Cont'd

- School age
 - Fall with lateral compression of shoulder during sports
 - most common
 - Direct blow
- Adolescents
 - Athletic injuries
 - High impact sports such as football
 - High energy injuries
 - MVC
 - ATV
 - Motorcycle
 - Stress fracture secondary to repetitive activities
 - Rapid increase in athletic training program

Associated Injuries

- Associated injuries depend on age of patient
 - Neonates
 - Brachial plexus palsy
 - C5-C6 palsy
 - Toddlers
 - Injuries associated with non accidental trauma
 - Adolescents
 - Injuries associated with high energy mechanism
 - Rib, scapula fx, pneumothorax, brachial plexus injury

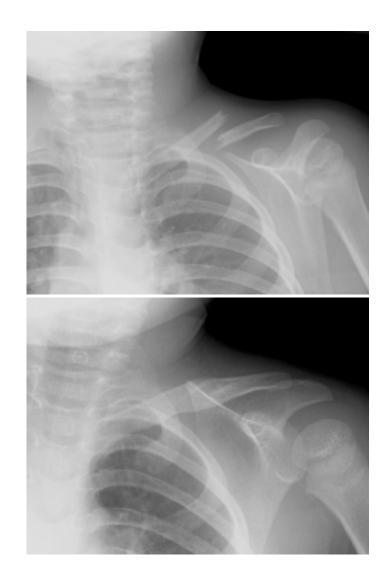
Signs and Symptoms

- Neonates
 - Decreased movement of effected extremity
 - Crying with passive movement of arm
 - Swelling, crepitus
 - Decreased Moro reflex
- Child/Adolescent
 - Deformity, swelling, ecchymosis
 - Skin tenting
 - Shoulder drooping/ shortening
 - Pain with range of motion

Imaging

- XR
 - AP
 - 45 degree cephalic tilt view
- CT
 - May be warranted in high energy mechanisms to further evaluate for additional injury
 - Allows evaluation of SC and AC joint injuries

Classification


- Generally described in terms of location and morphology
 - Medial vs midshaft vs lateral
 - Displaced vs nondisplaced
 - Open vs closed
 - Simple vs comminuted

Treatment

- Non-operative
 - Nondisplaced fractures
 - <2cm displacement
 - 95-100% union rate
 - Almost all fractures unite and result in minimal to no residual disability

Treatment

Treatment

- Sling immobilization for 2 weeks
 - Sling when out of home for an additional 2-4 weeks
- No proven benefit to figure-8 brace
- XR obtained at 4 week intervals until union occurs
- Noncontact activities typically resume at 6 weeks
- Contact activities resume at 3 months if healing is present
 - Must discuss refracture risk with early return to sports

Surgical Treatment

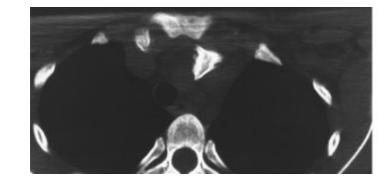
- Operative Indications
 - Absolute
 - Open fractures
 - Fractures with impending skin compromise
 - Fractures associated with neurovascular injury
 - Relative
 - Floating shoulder injuries
 - Polytrauma
 - "Severely displaced" ??

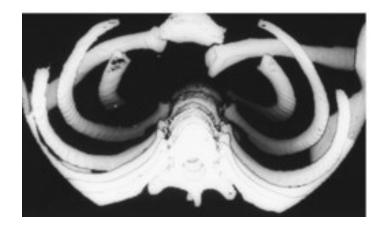
Surgical Treatment

- Technique
 - Approach superiorly over clavicle along Langer lines or inferiorly for improved cosmesis
 - Avoid cutaneous supraclavicular nerves traversing the clavicle
 - ORIF
 - Anatomic plates
 - Superior vs anterior placement
 - Intramedullary fixation
 - Titanium nails
 - Perc vs mini-open

Complications

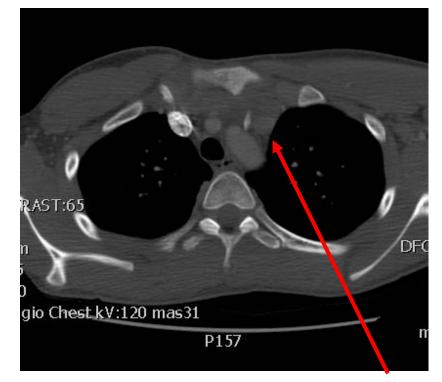
- Non-operative treatment
 - Nonunion
 - Malunion
 - Bony prominence
- Operative Treatment
 - Hardware prominence / pain
 - Re-fracture
 - Infection


Physeal Considerations


- Clavicle is the first bone to ossify
- Medial epiphysis fuses at 22-25 years of age
 - Last physis to close
- Lateral physis closes at 19 years
- Injuries to medial or lateral clavicle usually represent physeal separations
 - True sternoclavicular or acromioclavicular joint dislocations are less common
- Growth disturbance very rare

Medial Clavicular Injuries

- Lateral metaphyseal fragment displaces anteriorly or posteriorly
 - Periosteal sleeve left intact
- Strong costoclavicular and sternoclavicular ligaments usually remain attached to periosteal sleeve
- Medial epiphysis remains well located at sternoclavicular joint
 - Sternoclavicular dislocations are less common



Medial Clavicular Injuries

- Pseudo-sternoclavicular dislocation
 - Anterior displacement
 - Metaphyseal fragment lies in subcutaneous position
 - Posterior displacement
 - Puts innominate artery/vein, trachea, and esophagus at risk
 - Patients can present with dysphagia, hoarseness, pneumothorax, respiratory distress, brachial plexus injury, and vascular compromise
 - Critical to perform thorough neurovascular exam of extremity and assess respiratory status

Notice: Medial tip of clavicle adjacent to aortic arch!

Treatment

- Non-operative
 - Anterior fractures or dislocations
 - Can be considered for asymptomatic posterior dislocations
 - Significant remodeling potential, some deformity acceptable
 - Physeal fractures remodel
 - Dislocations DO NOT REMODEL
 - Treat symptomatically in sling or figure-of-eight brace
 - Recurrent instability is uncommon

Treatment

• Operative

- Closed reduction can be considered for displaced injuries
- Emergent reduction in OR indicated for posterior displacement with dyspnea or dysphagia
 - Consider having general or thoracic surgery on standby
- Closed reduction with traction and manual manipulation
- Open reduction utilized for posterior dislocations

• Heavy sutures are used to stabilize the reduction

Reduction Techniques

- Anterior Displacement
 - Supine with bolster between scapula
 - Longitudinal traction on bilateral upper extremities
 - Gentle posterior pressure on displaced metaphyseal fragment
- Posterior Displacement
 - Same positioning and traction as anterior reduction
 - Grasp medial clavicle with towel clip and pull anterior while applying posterior force on shoulder
 - If closed reduction fails, proceed to open reduction through incision superior to clavicle

Lateral (Distal) Clavicle Injuries

- Coracoclavicular ligaments (conoid and trapezoid) usually remain attached to periosteal sleeve and the lateral epiphyseal fragment
- When medial metaphyseal fragment is significantly displaced, intact periosteal sleeve may form new metaphysis resulting in duplicate lateral clavicle

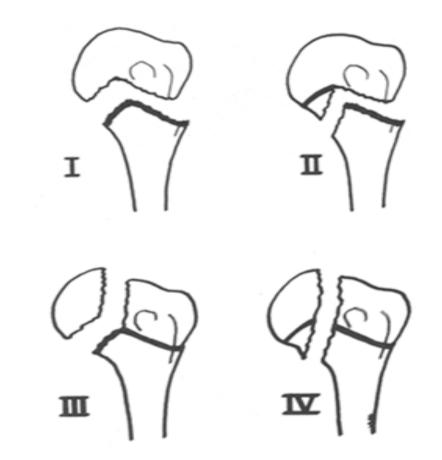
Treatment

- Non-operative
 - All type I and II injuries, type III in pts < 15y can be managed with sling
- Operative
 - Open reduction indicated for types IV, V, VI injuries
 - Fixation with suture repair of periosteal sleeve
 - Coracoclavicular fixation can be used
 - Avoid percutaneous pin fixation in clavicle due to risk of migration

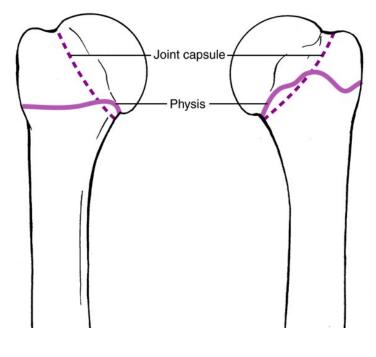
Pediatric Proximal Humerus Fractures

- Objectives- At the Conclusion of this presentation, the viewer should be familiar with
 - Epidemiology of pediatric proximal humerus fractures
 - Proximal humerus development
 - Common mechanism of injury
 - Classification of proximal humerus fractures
 - Treatment guidelines including acceptable radiographic alignment
 - Types of surgical management
 - complications

Proximal Humerus Fractures


- 3% of all physeal injuries
- More common in adolescents
- Most commonly Salter-Harris I or II injuries
- 80% of humeral growth comes from proximal physis
- Can be associated with glenohumeral dislocation

Proximal Humerus Fractures


- Birth injuries \rightarrow SH 1
- 0-5 yo \rightarrow SH 1
- 5-11 yo → metaphyseal
- 11 to maturity \rightarrow Salter II
- Others rare (III, IV)

Proximal Humerus Development

- Primary officiation center appears at 4-6m
- Secondary ossification centers:
 - Greater tuberosity- appears at 3y
 - Lesser tuberosity– appears at 5y
- Coalesce into single ossification center at 7y
- Physis concaves medially following the anatomic neck and extends distally to the inferior border of greater tuberosity
- Physis closure in later adolescence
 - As early as 14y is some girls and as late at 22y in some males

Mechanism of Injury

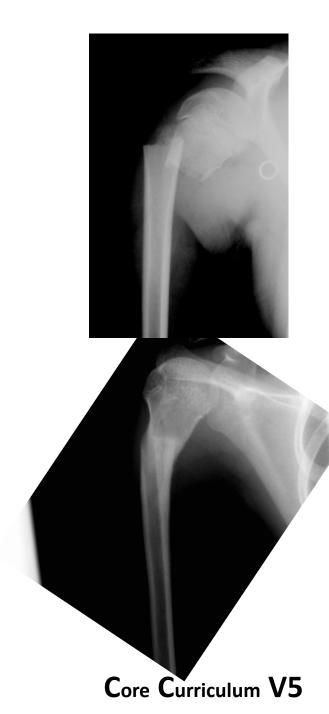
- Birth trauma
 - Hyperextension and rotation
- Child abuse
- Direct blow
- Indirect forced extension during a fall
- Pathological fractures through tumor or cyst
 - Unicameral bone cyst (shown)
 - Aneurysmal bone cyst

Classification

- Neer-Horwitz
 - Grade 1- less than 5mm displacement
 - Grade 2- between 5mm and 1/3 humeral shaft diameter
 - Grade 3- between 1/3 and 2/3 humeral shaft diameter
 - Grade 4- greater than 2/3 humeral shaft diameter

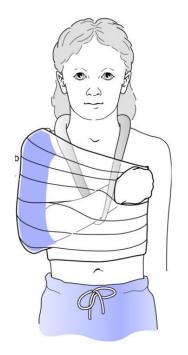
Proximal Humerus Fracture

- Proximal fragment flexed, abducted and externally rotated
 - Rotator cuff muscles
- Distal fragment displaced anteromedially, shortened, and adducted
 - Pectoralis major, latissimus dorsi, teres major
- Must look at Scapular-Y view for anterior displacement



Treatment

- Most can be treated non-operatively
 - Most children under 10y have sufficient growth remaining to remodel severely displaced fractures
- Consider surgical management in adolescent patients >13y with over 30 deg angulation or more than 50% displacement
- Surgical treatment
 - Open fractures
 - Polytrauma
 - Vascular injuries


Acceptable Alignment

- <5y- 70 deg angulation, 100% displacement
- 5-11y- 40 70 deg angulation, 50-100% displacement
- >12y- <40 deg angulation, <50% displacement
- Reduction maneuver
 - Longitudinal traction
 - Abduction to 90 deg
 - External rotation
- **Entrapped periosteum or bicep tendon can block reduction**

Shoulder Immobilization

- Sling and swathe
- Hanging arm cast
- Cuff and Collar
- Start gentle pendulum at 2 weeks
- Can begin overhead activities 4-6 weeks

Types of Surgical Management

- Percutaneous Pinning
- Flexible nailing
- Cannulated crews
- Plate fixation
- No consensus on superior fixation strategy
 - Recommend fixation determined on case-by-case basis
 - Based on age, sex, displacement, and potential to remodel fracture

Complications

- Pain, weakness, loss of ROM
- Physeal arrest
 - Shortening of the humerus
 - 11% in Salter Harris I or II
 - 33% in Salter Harris III or IV
- Varus malalignment
- Neurovascular injury

Pediatric Humeral Shaft Fractures

- Objectives- At the Conclusion of this presentation, the viewer should be familiar with
 - Epidemiology of pediatric humeral shaft fractures
 - Mechanism of Injury
 - Surgical and nonsurgical treatment options
 - Incidence of birth fractures
 - Complications

Humeral Shaft Fractures

- Second most common birth fracture
- MUST consider NAT in those <3y
- Pathologic fractures can occur through benign bone tumor or cyst
- Fractures can be associated with radial nerve palsy
 - 5% of pediatric humeral shaft fractures
 - High rates of spontaneous recovery

Mechanism of Injury

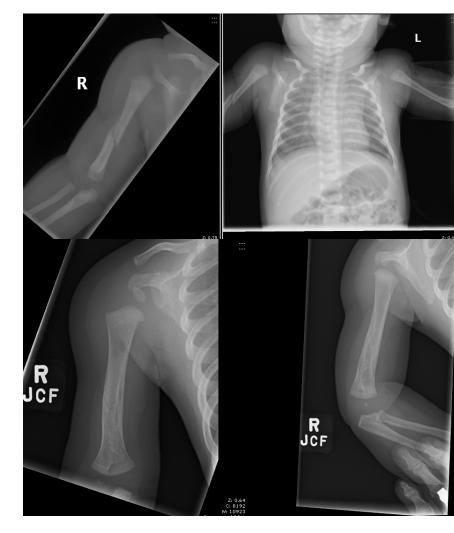
- Birth trauma
- Direct high energy forces
 - More likely to be open or proximal humeral shaft
 - Transverse, comminuted, segmental patterns
- Indirect forces
 - Oblique or spiral fractures
- Low-energy mechanisms should raise possibility of pathologic fx

Treatment

- Most common treatment option
 - Birth-related fractures
 - Stress fractures
 - Benign pathological fractures
 - Closed diaphyseal fractures with acceptable alignment
- Acceptable Alignment
 - 1 to 2 cm of shortening
 - < 20 deg of varus or valgus angulation
 - < 20 deg of anterior-posterior angulation
 - \leq 15 deg of malrotation

Treatment

- Surgical management
 - Open fractures
 - Polytrauma
 - Earlier mobilization
 - Vascular injury
- Options
 - External fixation
 - ORIF
 - ESIN
 - Retrograde
 - Antegrade



Birth Fractures

- Presents with deformity and/or pain
- May demonstrate pseudoparalysis
 - Observe neurological function
- Reduction is not needed
- Simple immobilization
 - Pin the sleeve to the shirt
 - Bandaging arm to thorax
 - Modified Velpeau bandage
 - Sling and swath
- 1-3 weeks of immobilization

Shoulder Immobilization

- Cuff and Collar
- Sling and swathe
- Coaptation splint
- Fracture bracing
- Hanging arm cast
- Velpaeu Bandage

Complications

- Malunion
 - Can occur, but rarely cause functional problem
- Nonunion
 - Uncommon
- Radial nerve palsy
 - Most commonly neuropraxia
 - Typically resolves with observation
 - Apply wrist splint to maintain wrist motion in extension
 - EMG and radial nerve exploration at 3-4 months if activity is not present

References

- Herring JA, Tachdjian MO, Texas Scottish Rite Hospital for Children. *Tachdjian's Pediatric Orthopaedics from the Texas Scottish Rite Hospital for Children*.; 2014.
- Lee JT, Nasreddine AY, Black EM et al. Posterior Sternoclavicular Joint Injuries in Skeletally Immature Patients. *JPO*. 2014;34:369-75.
- Pahlavan S, Baldwin KD, Pandya NK, Namdari S, Hosalkar H. Proximal humerus fractures in the pediatric population: a systematic review. *J Child Orthop*. 2011;5(3):187-194.
- Popkin CA, Levine WN, Ahmad CS. Evaluation and management of pediatric proximal humerus fractures. J Am Acad Orthop Surg. 2015;23(2):77-86.
- Waters PM, Skaggs DL, Flynn JM, Court-Brown CM, eds. *Rockwood and Wilkins' Fractures in Children*. Ninth edition. Wolters Kluwer; 2020.

