Pediatric Knee Injuries

William Ryan, MD

University of Pennsylvania

Disclaimer

 All clinical and radiographic images provided are used with permission of William Ryan, MD and Chris Souder, MD, unless otherwise specified

Objectives:

- Highlight the importance of an anatomical reduction in physeal fractures to prevent growth arrest, malalignment, and leg length discrepancy
- Discuss fixation options that balance the need to maintain a reduction while respecting the biology of the physis
- Recognize injury patterns that are associated with neurovascular compromise
- Understand the differential diagnosis of acute knee effusion and strategies for managing intra-articular fractures in the pediatric knee

Overview:

Extra-articular Injuries:

- Distal Femoral Physeal Fractures
- Proximal Tibia Physeal Fractures
- Tibial Tubercle Fractures

Intra-articular Injuries:

- Tibial Eminence Fractures
- Patellar Sleeve Injuries
- Osteochondral Fractures

Distal Femur Physeal Fractures

Distal Femoral Physeal Fractures

- 1898 "Wagon-wheel injury" described by Poland
 - Often resulted in open injury w/ neurovascular compromise
 - High rate of popliteal ischemia and uncontrollable infection
- 1952 Aitken & Magill series of distal femoral physeal fxs in football players
 - Noted high rate of leg length discrepancies and angular deformities
- Complex contour of physis makes it possible for shearing of the fracture line across several physeal zones (Brashear)

Images courtesy of Chris Souder, MD

Epidemiology

- Fracture Epidemiology
 - Rare injury (<1% of pediatric fractures)
 - Mechanism:
 - Often the result of high energy trauma in <11 y.o. (pedestrian struck or fall from a height)
 - Sports injuries in teens (2/3 of distal femoral fractures)
- Associated Injuries
 - Do not miss VASCULAR INJURY or TIBIAL/PERONEAL NERVE INJURY
 - Do not miss COMPARTMENT SYNDROME

Mechanism of Injury

- Hyperextension → epiphysis displaced anteriorly, metaphysis displaced into popliteal fossa
 - Neurovascular injury
 - Reduction often unstable
 - Extreme knee flexion sometimes necessary to tighten anterior soft tissue hinge
- Varus-Valgus due to adduction/abduction force
 - Periosteal hinge intact on concavity
 - Periosteum can be entrapped on convexity

Images courtesy of Greg Osgood, MD

Anatomy

- First physis to ossify, last long bone to fuse
- Contributes 70% growth of the femur, 37% growth of the lower extremity
 - Grows at rate of 9mm/year
- Medial and lateral collateral ligaments, as well as the anterior and posterior cruciate ligaments originate <u>distal</u> to femoral physis
- Physis fractures before ligaments tear

Fractures of the distal femur and proximal tibial physis account for 2.2% of physeal fractures BUT they account for 51% of growth plate arrest³⁹

Distal Femur: Anatomy

- Both heads of gastrocnemius & plantaris originate just <u>proximal</u> to physis
 - Posterior epiphyseal displacement or angulation is uncommon
 - Ligament, rather than muscular pull more likely explains initial displacement at time of injury

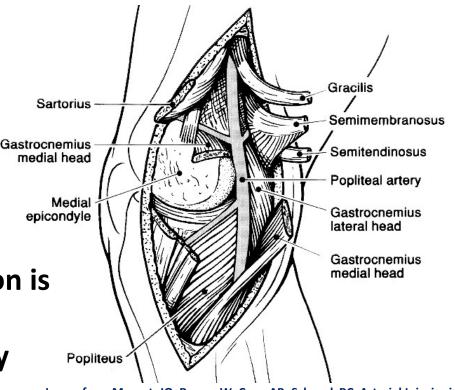


Image from Muscat, JO, Rogers W, Cruz, AB, Schenck RC. Arterial Injuries in Orthopaedics: The Posteromedial Approach for Vascular Control About the Knee. J Orthop Trauma. 1996;10(7):476-480

- Sciatic nerve divides into peroneal and posterior tibial branches just proximal to the physis
- Popliteal artery is posterior at the level of the distal femur
 - Tethered at adductor hiatus proximally and soleus hiatus distally
 - Displaced fxs need surveillance of vascular injury

Distal Femur: Exam

- Effusion
- Ecchymosis of distal thigh and popliteal fossa within 72 hours
- Deformity
 - Varus/valgus metaphyseal spike dimpling vastus medialis/lateralis
 - Anterior patella prominence and fullness of popliteal fossa
 - Can feel for adductor tubercle to differentiate from knee dislocation
- Point tenderness along the physis & adductor tubercle
 - Tenderness medially at the physis can be a nondisplaced fracture
 - MCL injury is less likely

Distal Femur: Exam

Motor and sensory

- Peroneal and tibial nerves
 - Most common with varus displacement
- Vascular
 - Popliteal artery injury
 - Most common with anterior displacement
 - ABI testing



image courtesy of Alfred Mansour, MD (2016 version)

- MRI can detect nondisplaced fractures
 - Stress examination NO longer recommended due to risk of additional physeal injury

Treatment

Goals:

Healing of the fracture in acceptable alignment

- Gentle reduction of the distal femoral physis
 - Reduce the risk of growth arrest
- Anatomic reduction of articular surface
 - Decrease likelihood of premature arthritis

Image courtesy of Chris Souder, MD

Treatment

- Salter-Harris classification useful in description and treatment planning
 - Not strongly predictive of growth disturbance
- Direction and degree of displacement predict type and severity of complications (Arkader et al. JPO 2007)

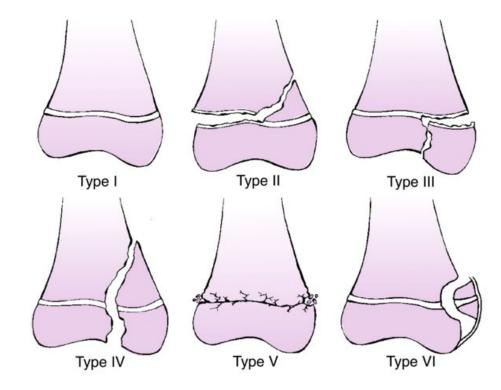


Image from R&W Fractures in Children 9th Ed. Figure 25-4

Reduction under Anesthesia

Intact tether of periosteum on the side of the epiphyseal displacement:

- 1) increase deformity slightly + traction
- 2) then realignment of angular deformity
- 90% traction, 10% leverage to avoid physeal injury

Medial/Lateral Displacement:

- Knee in extension, hip in slight flexion
- Assistant holds thigh
- Traction w/ 1 hand, palm placed at concavity of deformity for leverage

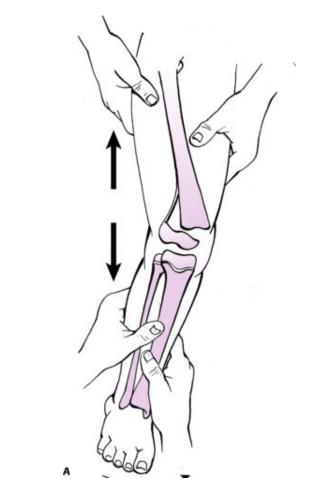


Image from R&W Fractures in Children 9th Ed. Figure 25-12A

Reduction under Anesthesia

Anterior Displacement:

- Traction to leg, hip flexed to 60
- Assistant holds thigh
- Longitudinal traction and downward pressure on epiphysis
- Knee is flexed to 45-90 degrees

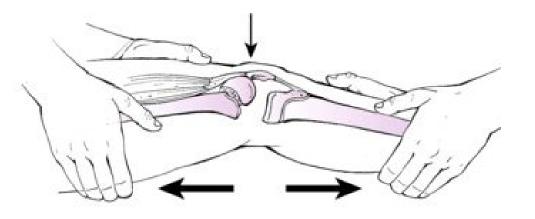


Image from R&W Fractures in Children 9th Ed. Figure 25-12B

* Closed reduction can be performed up to 10 days after injury.

Treatment

- Acceptable alignment for SH I & II
 - < 15-20 degrees in sagittal plane (Sharrard et al.)
 - < 5 degrees varus/valgus does not remodel
- Anatomic reduction required for SH III & IV
 - CRPP vs ORIF
- Open treatment required for:
 - Open fractures
 - Entrapped tissues preventing reduction
 - Neurovascular injury

Image courtesy of Chris Souder, MD

Image courtesy of Greg Osgood, MD

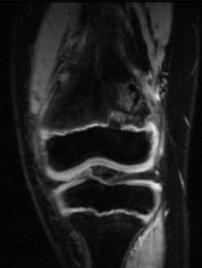
Salter Harris I

- Can be non-displaced or displaced
 - Nondisplaced fracture demonstrates TTP at the physis on exam
 - F/u radiographs demonstrate bony reaction

- long leg cast x 4 weeks if nondisplaced
 - LLC in 15-20 degrees flexion w/ 3-point mold
 - Thomson et al. many displaced fractures lost reduction with cast immobilization – recommend internal fixation of all displaced fxs
 - Follow up XR in 1 week
- CRPP for displaced fractures
 - Maintain pins and LLC x 4 weeks

Salter Harris II

- Most common type fracture type
- Displacement typically to side of Thurston Holland (TH) fragment
- Varus/valgus stress to reduce then percutaneous screws
 - Screw from TH fragment into intact metaphysis
 - Smooth wires used if TH fragment is small
 - Treated like a SH-1
- ORIF required if entrapped soft tissues block reduction
 - Opened on convexity



Images courtesy of Chris Souder, MD

Salter Harris II

- Tendency to produce premature physeal closure (~30-50%)
 - Riseborough et al: 11/25 pts closed prematurely resulting in >2.4cm LLD
 - Growth arrest related to the <u>severity</u> of displacement (Stephens et al.)
 - Signs of premature closure typically evident within 6 months of injury
- Angular deformity more common
 - Metaphyseal fragment physis spared

Salter Harris III

- Tends to occur as physis is closing (decreased risk of LLD)
 - Typically involves the medial physis and MFC
- Medial femoral condyle fracture results from valgus force
 - MCL attachment leads to epiphyseal avulsion
 - Can be associated with cruciate ligament injury
- Tx: ORIF w/ transepiphyseal screws
 - Anatomic reduction of articular surface

Image courtesy of Chris Souder, MD

images courtesy of Alfred Mansour, MD (2016 version)

Salter Harris IV

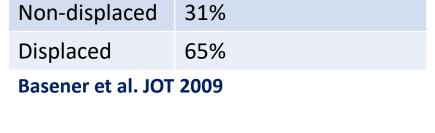
- Uncommon injury
- Anatomic reduction necessary
 - Possibly decrease risk of physeal arrest
 - Restores the joint surface
- Highest risk for partial growth arrest
- Tx: ORIF w/ cannulated screws avoiding physis

Images courtesy of Chris Souder, MD

Distal Femur: Early Complications

- Recurrent physeal displacement
- Knee ligament injury (37%)
 - 14/29 patients w/ physeal injury and associated ligament instability (Bertin and Goble)
 - SH3 associated with ACL tears (Brone and Wroble)
- Neurovascular injury
 - Peroneal nerve (3%)
 - Popliteal artery (1%)

Distal Femur: Late Complications


- Physeal arrest (~30-50%)
 - Partial arrest
 - Angular deformity
 - Most common
 - Complete arrest
 - Leg length discrepancy
 - Usually evident by 6 months post injury

Growth Disturbance:

Image courtesy of Chris Souder, MD

Classification:	Growth Disturbance:	Displacement:
SH 1	36%	Non-displaced
SH 2	58%	Displaced
SH 3	49%	Basener et al. JO
SH 4	64%	

*Smooth pins across physis not statistically associated w/ growth arrest Garrett et al. BJJ 2011

Distal Femur: Late Complications

- Stiffness
- Quadriceps weakness
- Persistent knee instability
 - Must perform ligamentous examination after fixation

Proximal Tibia Physeal Fractures

Proximal Tibia Physeal Fractures

- Rare injury (0.8% of physeal fractures)
 - Inherent stability by surrounding structures: fibula (laterally), superficial MCL (medially), semimembranosus (posteromedially), tibial tubercle (anteriorly)
 - Epiphysis typically displaces anterior, anteromedial, or anterolateral
 - Rare posterior displacement results in epiphysis and tubercle moving as unit
- Fuses ~ 15 years (posteriorly → anteriorly)
- Contributes 6mm growth/year

Mechanism

- Varus/Valgus → occurs near maturity
 - Apex medial implies partial tear of superficial MCL
- Flexion injury boys age 15-16 during jumping
 - Early closure → results in genu recurvatum deformity
 - Pes anserinus or periosteum may be entrapped
 - Transition between tibial physeal separation and tibial tubercle fx
- Hyperextension risk of vascular injury and compartment syndrome

image courtesy of Alfred Mansour, MD (2016 version)

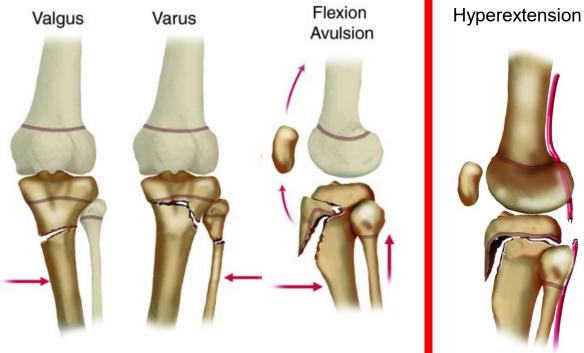


Image from R&W Fractures in Children 9th Ed. Figures 26-9 (Left) & 26-3 (Right)

Classification

SH 1

- 50% nondisplaced
- Medial or posterior physeal widening
- Associated proximal fibula physeal injury

SH 2

- 30% nondisplaced
- Displacement typically medial w/ metaphyseal spike laterally – valgus deformity

SH3

- Most common is vertical fracture through lateral epiphysis
- Associated with MCL injury

SH 4

Can involve medial or lateral plateau

SH5

• Rare, usually made in retrospect after progressive angulation or LLD

Images courtesy of Greg Osgood, MD

Core Curriculum V5

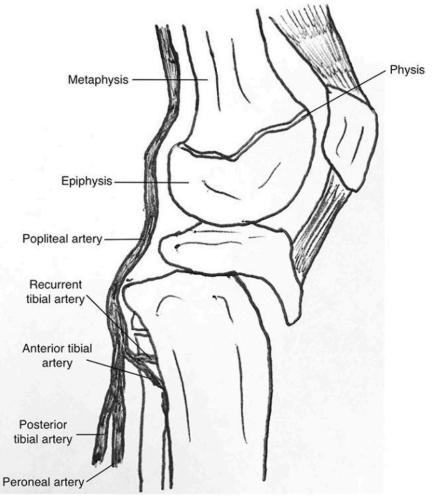
Treatment

- Closed reduction and long leg cast in stable fracture patterns
 - Not common
- CRPP
 - Most common technique
- Screw fixation if metaphyseal fragment is large

Lovejoy SA, Mehlman, CT. The Community Orthopaedic Surgeon Taking Trauma Call: Pediatric Tibia Fracture Pearls and Pitfalls. *J Orthop Trauma*. 2017;31:22-26.

Complications

- Physeal disturbance
 - Most common complication
 - 25% incidence
 - Shortening or angulation
 - Recurvatum is common
- Popliteal artery injury
 - 10% incidence (Gautier, 1998)
- Peroneal nerve palsy
 - Spontaneous recovery is typical
- Knee ligament instability (40% in SH3 & 4)
 - 5/15 concomitant avulsion of ACL (Poulsen, 1989)
 - SH3 fx associated with MCL tears

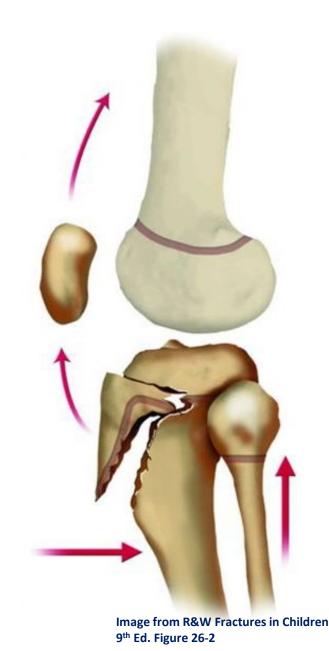


Images courtesy of Chris Souder, MD

Vascular Injury

- Popliteal artery injury (10%)²⁰
 - Tethered near posterior surface of proximal tibial epiphysis by geniculate branches and trifurcation
 - Proximal tibial artery passes under soleus hiatus
 - Anterior tibial artery travels above proximal border of interosseous membrane

Lovejoy SA, Mehlman, CT. The Community Orthopaedic Surgeon Taking Trauma Call: Pediatric Tibia Fracture Pearls and Pitfalls. *J Orthop Trauma*. 2017;31:22-26.



Tibial Tubercle Fractures

Tibial Tubercle Fractures

- < 1% of all epiphyseal fractures
- Occurs almost exclusively in adolescent males during jumping activities
 - Explosive quad contraction during jumping
 - Rapid passive knee flexion against contracting quad while landing
- Fracture pattern depends on amount of physeal closure and degree of knee flexion at time of injury⁴²
 - Physis closes posterior \rightarrow anterior
 - > 30 degrees of flexion results in SH3 of proximal tibial physis²³

Tibial Tubercle: Exam

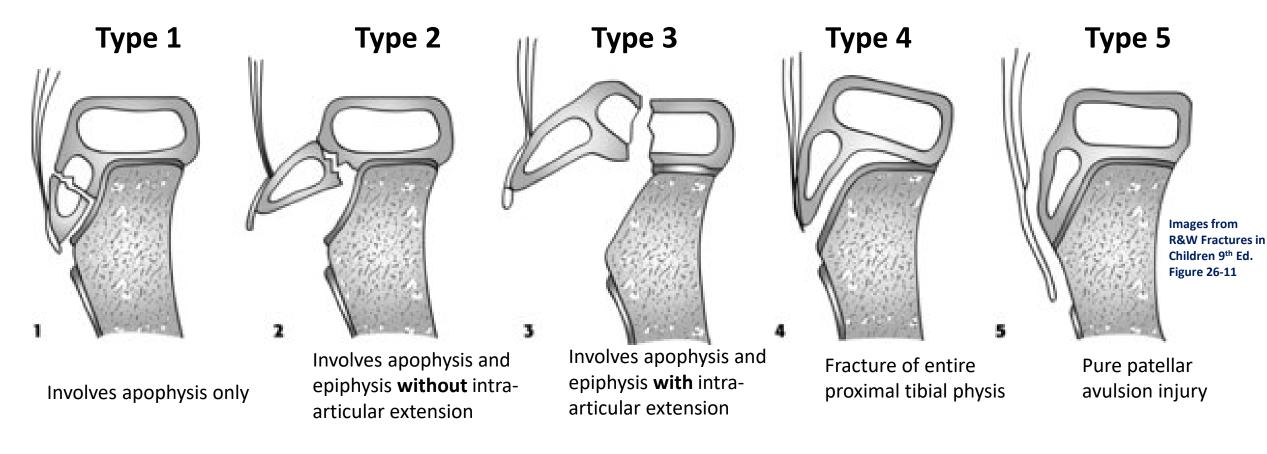

- Inability to fully extend knee
- Anterior knee pain
- Effusion, hemarthrosis
- Skin tenting
- Patella alta
- Must evaluate for compartment swelling
 - Pulses, palpate compartments, stretch testing of anterior compartment musculature

Image from R&W Fractures in Children 9th Ed. Figure 26-8

Tibial Tubercle: Modified Ogden Classification

 Degree of displacement depends on severity of injury to adjacent soft tissue attachments (Ogden et al)

Treatment

- Extend leg to reduce
- Splint and admit for observation
 - Increased risk of compartment syndrome
 - Risk of bleeding from anterior tibial recurrent artery
- Non-operative treatment
 - Minimally displaced fractures
 - Long leg cast in full extension x 4-6 weeks

images courtesy of Alfred Mansour, MD (2016 version)

Treatment

Surgical fixation

- Open reduction with internal fixation
 - Allows removal of large periosteal flap
 - Anatomic reduction
 - Inspect joint through fracture site ensure meniscus is not entrapped
 - Knee extension reduces the fracture
 - Screw fixation most commonly used
 - Smooth k-wires in young children
 - Tension band suture can be used to reinforce repair
 - Consider prophylactic anterior compartment fasciotomy

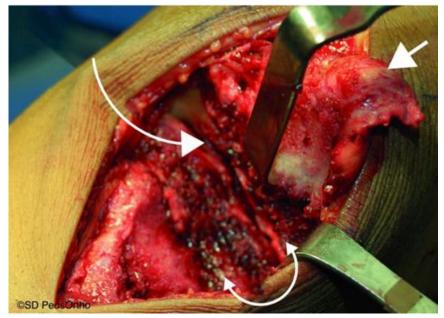


Image from R&W Fractures in Children 9th Ed. Figure 26-18



Image courtesy of Chris Souder, MD

Core Curriculum V5

Image courtesy of Chris Souder, MD

Complications

- Compartment syndrome
 - Risk of bleeding from anterior tibial recurrent artery
 - Near base of tubercle
- Low rate of tendon avulsion (2%), meniscal tear (2%), & cruciate ligament laxity (1%) (Pretell-Mazzini et al, JPO 2016)

Intra-articular Knee Injuries

Intra-articular Knee Injuries

Differential diagnosis for acute hemarthrosis within 2 hours of injury includes:¹³

- Tibial eminence fracture
- Patellofemoral dislocation
- Osteochondral fracture
 - Typically associated with a PF dislocation
- Cruciate ligament rupture
- Peripheral meniscal tear

Tibial Eminence Fractures

- Most commonly caused by bike accidents & athletic injuries (Meyers & McKeever JBJS 1959)
- Chondroepiphyseal avulsion of ACL
 - Incompletely ossified tibial spine weaker to tensile strength than ACL
- Mechanism: forced valgus and external rotation of tibia

Associated injuries:

- 37% associated meniscal injury¹⁵
 - Increased incidence with age, Tanner stage & pubescence
 - 90% involved lateral meniscus
 - Anterior horn remains attached to tibial spine fragment²⁸
 - Collateral ligament injury uncommon

Lovejoy SA, Mehlman, CT. The Community Orthopaedic Surgeon Taking Trauma Call: Pediatric Tibia Fracture Pearls and Pitfalls. *J Orthop Trauma*.2017;31:22-26.

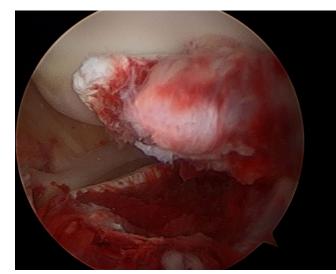


Image courtesy of Chris Souder, MD Core Curriculum V5

Tibial Eminence: Evaluation

Lateral imaging helps determine:

- Fracture classification
- Amount of displacement
- Size of fragment
- Degree of comminution
- Status of physis
- Entrapped soft-tissue

MRI may be helpful to assess concomitant injuries (Ishibashi et al, CORR 2005)

Image from R&W Fractures in Children 9th Ed. Figure 27-5

image courtesy of Alfred Mansour, MD (2016 version) Core Curriculum V5

Myers & McKeever Classification

*Modification by Zaricznyi

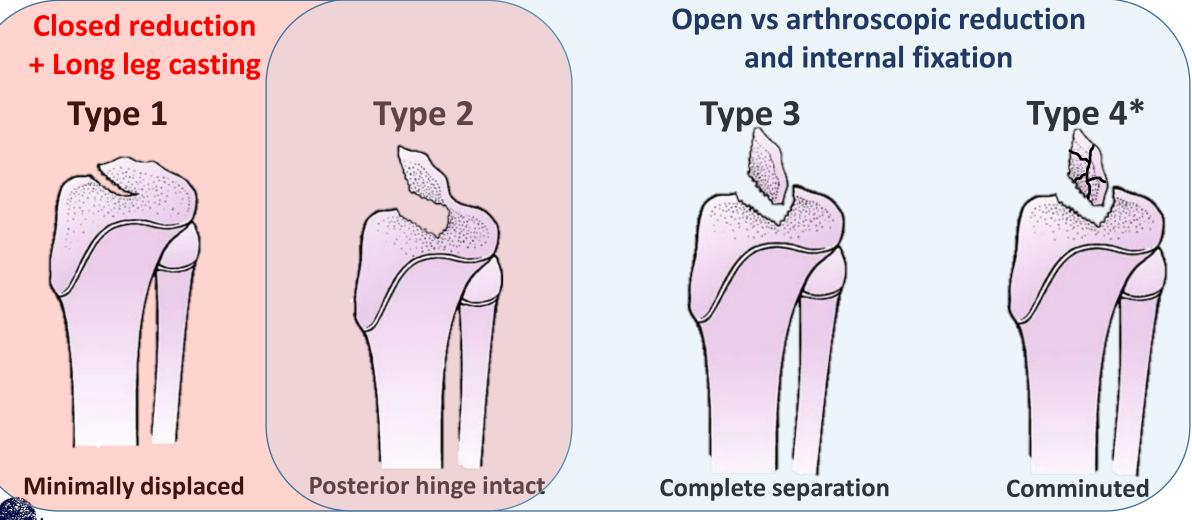


Image adapted from R&W Fractures in Children 9th Ed. Figure 27-4

Treatment: Type I & II

- Knee aspiration & reduction in extension
- If < 3mm of displacement long leg cast in 10° flexion x 4 to 6 weeks, followed by hinged brace
- If >3mm of displacement or block to extension open vs arthroscopic reduction +/- internal fixation
- Meniscus may block anatomic reduction
 - Kocher et al. entrapment of anterior horn of medical meniscus, lateral meniscus or intermeniscal ligament in 26% of type II fractures and 65% of type III (Kocher et al, AJSM 2003)
 - Entrapment may cause knee pain after fracture healing (Chandler et al, Athroscopy 1995)

Image from R&W Fractures in Children 9th Ed. Figure 27-5

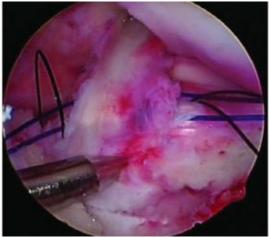


Image from R&W Fractures in Children 9th Ed. Figure 27-11E Core Curriculum V5

Treatment: Type III & IV

- Open or arthroscopic reduction
- Fixation options include:
 - Transosseous suture, screw, K-wire, suture anchor
 - Similar strength between bioabsorbable and metallic screw³⁰, and nonabsorbable vs absorbable suture²⁷
 - Increased strength with suture fixation over internal fixation^{8 & 14}
 - Inconsistent strength with suture fixation³
- For Type IV fractures suture fixation is preferred

Image courtesy of Chris Souder, MD

Image courtesy of Chris Souder, MD

Images from R&W Fractures in Children 9th Ed. Figure 27-12B (right) & 27-12D (left)

Core Curriculum V5

Complications

- Loss of extension (60%)
- Arthrofibrosis (10%)⁴⁸
 - Early motion minimizes risk
- Residual knee laxity
 - Common occurrence
 - Rarely symptomatic
- Nonunion
- Malunion
 - May cause mechanical impingement in extension¹⁷
 - Growth disturbance
 - Due to hardware crossing proximal tibial physis resulting in recurvatum deformity or shortening³³

Image from R&W Fractures in Children 9th Ed. Figure 27-13

Osteochondral Fractures

- Associated with acute patellar dislocation (19-50%)³⁴
 - Either dislocation or relocation of patella can cause fracture
 - Less common for chronic dislocations due to soft tissue laxity
- Most common locations: inferior medial patellar facet, lateral aspect of lateral femoral condyle

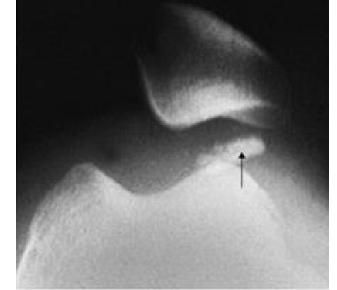
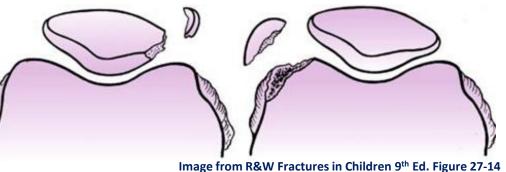



Image from R&W Fractures in Children 9th Ed. Figure 27-15B

Mechanism:

1) direct blow to knee with shearing force to LFC or MFC

2) flexion rotation injury internal rotation of tibia on a fixed foot w/ quad contraction

Core Curriculum V5

Osteochondral Fractures

- Shear stress in juvenile joint → forces transmitted to subchondral bone by interdigitating cartilage resulting in failure at porous trabecular bone interface¹⁶
 - Fragments often contain subchondral bone and are visible on XR
 - XR fail to detect fragment in 36% of cases³⁰
- MRI helpful in diagnosis of the injury
 - Can also aid in differentiating osteochondral versus chondral-only fragments

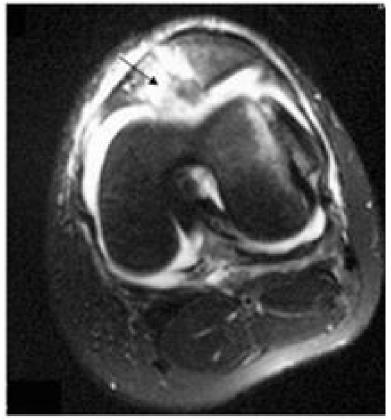
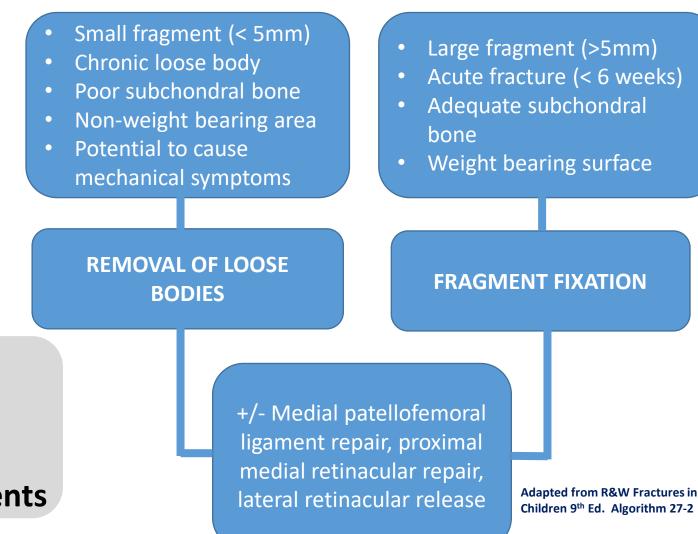


Image from R&W Fractures in Children 9th Ed. Figure 27-17B


Treatment

Based on:

- Patient age & activity level
- Size, location & viability of fragment
- Degree of surrounding injury

Fixation indicated for:

- Large pieces
- Sufficient bone attached
- Central weightbearing fragments

Complications

- Arthrofibrosis
 - Treat with aggressive therapy & dynamic splinting during first 3-4 mo. (Pace et al., JPO 2018)
- Loss of fixation/nonunion
- Osteoarthritis
 - Excision of large weightbearing fragments predictably leads to degenerative changes (Anderson et al., AJSM 1997)
- Repeat patellar dislocation
 - Controversial whether concomitant MPFL repair decreases risk of recurrent instability

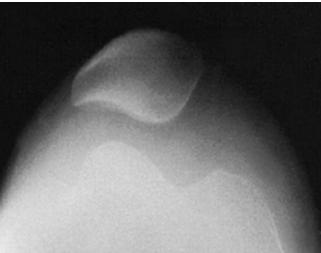
Patella Fractures

- Patella ossifies at 3-5 years of life
- Injury is rare because patella mostly cartilaginous and has greater mobility than adults
- Avulsion fractures are more common in children than adults

Mechanism:

- Eccentric quadriceps contraction
- Direct blow
 - Results in comminuted pattern

Image courtesy of Alfred Mansour, MD (2016 version)



Examination

- Painful, swollen knee
- Inability to extend knee
- Hemarthrosis
- Patella alta

- Palpable defect at affected patellar pole
- Apprehension test may be positive if fracture secondary to patellar dislocation
- Sagittal plane fractures best seen on sunrise view
- Comparison views of contralateral side may be helpful
 - Sleeve fractures may only contain small subchondral fragment

Core Curriculum V5

Image courtesy of Greg Osgood, MD

Classification (Grogan JPO 1990)

Primary Osseous Fractures

Avulsion Fractures:

- NO significant avulsion of cartilage
- Superior, inferior, medial (often w/ acute patellar dislocation), lateral (chronic stress from repetitive pull of vastus lateralis)

Sleeve Fractures:

- Avulsion of pole of patella WITH a large potion of articular cartilage
 - Cartilage, retinaculum, and periosteum may be involved
- Typically occur at inferior or superior poles

Image courtesy of Alfred Mansour, MD (2016 version)

Image courtesy of Greg Osgood, MD (2011 version)

Treatment

Closed treatment with long leg casting Indications:

- 1. Extensor mechanism intact
- 2. < 2-3mm of articular displacement

Left: image courtesy of Alfred Mansour, MD (2016 version)

Right: image courtesy of Greg Osgood, MD

Core Curriculum V5

Open reduction and internal fixation:

- AO tension band, cerclage wire/ nonabsorbable suture, interfragmentary screws
 - Sutures alone sufficient for sleeve fractures
- Recommended to repair retinaculum
- Splint for 4-6 weeks

Summary

- Extra-articular knee injuries require an anatomical reduction to prevent physeal arrest, malalignment, and leg length discrepancy
- Fixation must be adequate to prevent loss of reduction while respecting the biology of the physis
 - Postoperative supplemental splint/cast may be necessary
- Understand the differential diagnosis of acute knee effusion and strategies for managing intra-articular fractures in the pediatric knee

References

1. Aitken AP, Magill HK. Fractures involving the distal femoral epiphyseal cartilage. J Bone Joint Surg Am. 1952;34(1):96-108.

2. Anderson AF, Pagnani MJ. Osteochondritis dissecans of the femoral condyles. Long-term results of excision of the fragment. Am J Sports Med. 1997;25(6):830-834.

3. Anderson CN, Nyman JS, McCullough KA, et al. Biomechanical evaluation of physeal-sparing fixation methods in tibial eminence fractures. *Am J Sports Med*. 2013;41(7):1586–1594.

4. Arkader A, Warner WC Jr, Horn BD, Shaw RN, Wells L. Predicting the outcome of physeal fractures of the distal femur. J Pediatr Orthop. 2007;27:703–708.

5. Basener CJ, Mehlman CT, DiPasquale TG. Growth disturbance after distal femoral growth plate fractures in children: a meta-analysis. J Orthop Trauma. 2009;23(9):663–667.

6. Bertin KC, Goble EM. Ligament injuries associated with physeal fractures about the knee. *Clin Orthop Relat Res.* 1983;(177):188–195.

7. Blasier RD. Distal femoral physeal fractures. In: Sam W. Wiesel, ed. <u>Operative Techniques in Orthopaedic Surgery</u>. Philadelphia, PA: Lippincott Williams & Wilkins; 2011:1116–1121.

8. Bong MR, Romero A, Kubiak E, et al. Suture versus screw fixation of displaced tibial eminence fractures: a biomechanical comparison. Arthroscopy. 2005;21(10):1172–1176.

9. Brashear HR Jr: Epiphysial fractures of the lower extremity. Southern Med J 1958;51:845-851.

10. Brone LA, Wroble RR. Salter-Harris type III fracture of the medial femoral condyle associated with an anterior cruciate ligament tear. Report of three cases and review of the literature. *Am J Sports Med.* 1998;26(4):581–586.

11. Burkhart SS, Peterson HA. Fractures of the proximal tibial epiphysis. J Bone Joint Surg 1979;61A: 996–1002

12. Chandler JT, Miller TK. Tibial eminence fracture with meniscal entrapment. Arthroscopy. 1995;11(4):499–502.

13. DeHaven KE. Diagnosis of acute knee injuries with hemarthrosis. Am J Sports Med. 1980;8(1):9–14.

14. Eggers AK, Becker C, Weimann A, et al. Biomechanical evaluation of different fixation methods for tibial eminence fractures. Am J Sports Med. 2007;35(3):404–410.

15. Feucht MJ, Brucker PU, Camathias C, et al. Meniscal injuries in children and adolescents undergoing surgical treatment for tibial eminence fractures. *Knee Surg Sports Traumatol Arthrosc*. 2017;25(2):445–453.

16. Flachsmann R, Broom ND, Hardy AE, et al. Why is the adolescent joint particularly susceptible to osteochondral shear fracture?. *Clin Orthop Relat Res*. 2000;381:212–221.

17. Fyfe IS, Jackson JP. Tibial intercondylar fractures in children: a review of the classification and the treatment of mal-union. *Injury*. 1981;13(2):165–169.

18. Garrett BR, Hoffman EB, Carrara H. The effect of percutaneous pin fixation in the treatment of distal femoral physeal fractures. J Bone Joint Surg Br. 2011;93(5):689–694.

19. Gautier E, Ziran BH, Egger B, Slongo T, Jakob RP. Growth disturbances after injuries of the proximal tibial epiphysis. Arch Orthop Trauma Surg. 1998;118(1-2):37-41

20. Grogan DP, Carey TP, Leffers D, Ogden JA. Avulsion fractures of the patella. J Pediatr Orthop. 1990 Nov-Dec;10(6):721-30.

21. Hutchinson J Jr, Barnard HL. An improved method of treatment of separation of the lower epiphysis of the femur. Lancet 1898;2: 1630

22. Ishibashi Y, Tsuda E, Sasaki T, et al. Magnetic resonance imaging AIDS in detecting concomitant injuries in patients with tibial spine fractures. *Clin Orthop Relat Res*. 2005;(434):207–212.

23. Jakoi A, Freidl M, Old A, et al. Tibial tubercle avulsion fractures in adolescent basketball players. Orthopedics. 2012;35(8):692–696.

24. Kocher MS, Micheli LJ, Gerbino P, et al. Tibial eminence fractures in children: prevalence of meniscal entrapment. *Am J Sports Med*. 2003;31(3):404–407.

25. Kramer DE, Yen YM. Kocher MS Ch. 117 Tibial Spine Fractures. In Scott WN (ed.). Insall & Scott Surgery of the Knee, 6th Edition. Philadelphia: Elsevier 2017. ISBN 9780323400466

26. Lafrance RM, Giordano B, Goldblatt J, et al. Pediatric tibial eminence fractures: evaluation and management. J Am Acad Orthop Surg. 2010;18(7):395–405.

27. Liao W, Li Z, Zhang H, et al. Arthroscopic fixation of tibial eminence fractures: a clinical comparative study of nonabsorbable sutures versus absorbable suture anchors. *Arthroscopy*. 2016;32(8):1639–1650.

28. Lowe J, Chaimsky G, Freedman A, et al. The anatomy of tibial eminence fractures: arthroscopic observations following failed closed reduction. *J Bone Joint Surg Am*. 2002;84-A(11):1933–1938.

29. Lovejoy SA, Mehlman, CT. The Community Orthopaedic Surgeon Taking Trauma Call: Pediatric Tibia Fracture Pearls and Pitfalls. J Orthop Trauma. 2017;31:22-26.

30. Mahar AT, Duncan D, Oka R, et al. Biomechanical comparison of four different fixation techniques for pediatric tibial eminence avulsion fractures. *J Pediatr Orthop*. 2008;28(2):159–162.

31. Matelic TM, Aronsson DD, Boyd DW Jr, et al. Acute hemarthrosis of the knee in children. Am J Sports Med. 1995;23(6):668–671.

32. Meyers MH, McKeever FM. Fracture of the intercondylar eminence of the tibia. J Bone Joint Surg Am. 1959;41-A(2):209–220; discussion 220–222.

33. Mylle J, Reynders P, Broos P. Transepiphysial fixation of anterior cruciate avulsion in a child. Report of a complication and review of the literature. Arch Orthop Trauma Surg. 1993;112(2):101–103.

34. Nietosvaara Y, Aalto K, Kallio PE. Acute patellar dislocation in children: incidence and associated osteochondral fractures. J Pediatr Orthop. 1994;14(4):513–515.

35. Ogden JA, Southwick WO. Osgood-Schlatter's disease and tibial tuberosity development. *Clin Orthop Relat Res.* 1976;(116):180–189.

36. Ogden JA, Tross RB, Murphy MJ. Fractures of the tibial tuberosity in adolescents. J Bone Joint Surg Am. 1980;62(2):205–215.

37. Pace JL, Nasreddine AY, Simoni M, et al. Dynamic splinting in children and adolescents with stiffness after knee surgery. J Pediatr Orthop. 2018;38:38–43.

38. Pennock AT, Ellis HB, Willimon SC, et al. Intra-articular Physeal Fractures of the Distal Femur: A Frequently Missed Diagnosis in Adolescent Athletes. Orthop J Sports Med. 2017;5(10):2325967117731567.

39. Peterson HA, Madhok R, Benson JT, et al. Physeal fractures: Part 1. Epidemiology in Olmsted County, Minnesota, 1979–1988. J Pediatr Orthop. 1994;14(4):423–430.

40. Poland J. *Traumatic Separation of the Epiphyses*. London, England: Smith, Elder & Co; 1898.

41. Poulsen TD, Skak SV, Jensen TT. Epiphyseal fractures of the proximal tibia. *Injury*. 1989;20(2):111–113.

42. Pretell-Mazzini J, Kelly DM, Sawyer JR, et al. Outcomes and complications of tibial tubercle fractures in pediatric patients: a systematic review of the literature. *J Pediatr Orthop*. 2016;36(5):440–446.

43. Riseborough EJ, Barrett IR, Shapiro F. Growth disturbances following distal femoral physeal fracture-separations. *J Bone Joint Surg Am.* 1983;65:885–893.

44. Salter RB, Harris WR. Injuries involving the epiphyseal plate. *J Bone Joint Surg Am*. 1963;45:587–622.

45. Stephens DC, Louns DS. Traumatic separation of the distal femoral epiphyseal cartilage. *J Bone Joint Surg Am*. 1974;56(7):1383–1390.

46. Thomson JD, Stricker SJ, Williams MM. Fractures of the distal femoral epiphyseal plate. J Pediatr Orthop. 1995;15(4):474–478.

47. Vander Have KL, Ganley TJ, Kocher MS, et al. Arthrofibrosis after surgical fixation of tibial eminence fractures in children and adolescents. *Am J Sports Med*. 2010;38(2):298–301.

Core Curriculum V5

48. Wiley JJ, Baxter MP. Tibial spine fractures in children. Clin Orthop Relat Res. 1990;(255):54-60

49. Zaricznyj B. Avulsion fracture of the tibial eminence: treatment by open reduction and pinning. *J Bone Joint Surg Am*. 1977;59(8):1111–1114.

Figure References

Figures used with permission.

Andras, Lindsay, Smith, Brian G. Chapter 25: Fractures of the Distal Femoral Physis. In: Waters PM, Skaggs DL, Flynn JM, eds. Rockwood and Green's Fractures in Children 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

Shore, Benjamin J., Edmonds, Eric W. Chapter 26: Proximal Tibial Physeal Fractures. In: Waters PM, Skaggs DL, Flynn JM, eds. Rockwood and Green's Fractures in Children 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

Kramer, Dennis E., Kocher, Minder S. Chapter 27: Intra-Articular Injuries of the Knee. In: Waters PM, Skaggs DL, Flynn JM, eds. Rockwood and Green's Fractures in Children 9e. Philadelphia, PA. Wolters Kluwer Health, Inc; 2019.

Lovejoy SA, Mehlman, CT. The Community Orthopaedic Surgeon Taking Trauma Call: Pediatric Tibia Fracture Pearls and Pitfalls. J Orthop Trauma. 2017;31:22-26.

Muscat, JO, Rogers W, Cruz, AB, Schenck RC. Arterial Injuries in Orthopaedics: The Posteromedial Approach for Vascular Control About the Knee. J Orthop Trauma. 1996;10(7):476-480

