When the fracture is more: Pathologic Fractures in the Pediatric Population

Adrienne R Socci, MD
Assistant Professor
Yale School of Medicine

Disclaimer

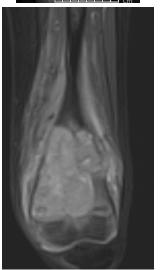
 All clinical and radiographic images provided are used with permission of Adrienne Socci, MD and Chris Souder, MD, unless otherwise specified

<u>Objectives</u>

- How to recognize a pathologic fracture
- How to evaluate a pathologic fracture
- Treatment principles in the management of pathologic fractures
- Common pathologies encountered in the pediatric population

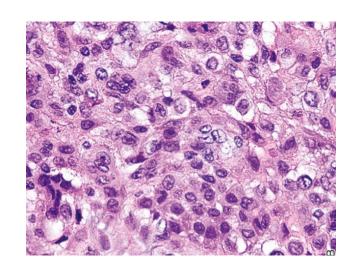
Recognizing a pathologic fracture

- Be suspicious when
 - The mechanism of injury seems disproportionately minor
 - Example: a fall from standing results in a humerus fracture
 - The fracture pattern is atypical for location
 - Example: transverse fracture in a femur after a fall
 - The bone doesn't look normal at the fracture site
 - Example: any lesion, or appearance that is cystic, lucent, sclerotic, or with surrounding reaction such as periosteal elevation



- Obtain a detailed history
 - Local and constitutional symptoms: confirm if any pain, particularly night pain, fever, weight loss, swelling, or lack of these
 - Current or past medical conditions
 - Family history
- Physical exam
 - A thorough exam includes evaluation for skin changes, swelling, soft tissue mass, lymphadenopathy

- Diagnostic imaging
 - Plain x-rays are typically done to identify the fracture
 - Ensure complete imaging of the whole bone
- Advanced imaging can be useful
 - MRI, CT, bone scan


Core Curriculum V5

- Diagnostic imaging
 - Evaluate the lesion
 - Location
 - Diagnosis can be specific to epiphysis/metaphysis/diaphysis
 - Character
 - Consider the presence of cyst, calcification, or matrix in the bone
 - Reaction of the underlying bone
 - Is there periosteal elevation, is the shape of the bone normal, is there a clear border to the lesion

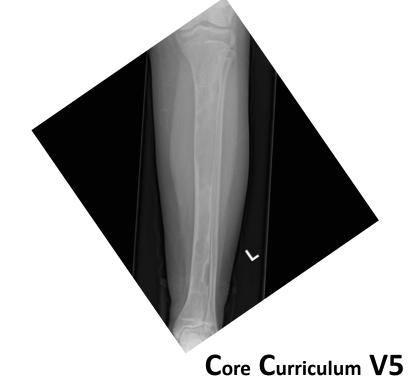
- Biopsy
 - May be needed for diagnosis or treatment planning
 - Sometimes performed at the time of operative fracture management
 - Principles of oncology must be followed in performing a biopsy
 - Consider possibility of malignancy and need for future resection
 - Send cultures as well as tissue specimen
- Consider consultation with an orthopaedic oncologist prior to biopsy, particularly if there is concern for malignancy.

- Treat the fracture
 - Not all pathologic fractures require operative management
 - Some pathologic fractures can be treated as though there were no lesion
- Treat the pathology
 - Some pathologies can be observed, or treated in a delayed fashion, i.e. after fracture healing.

Common benign pathologies by location

• Epiphysis:

- Chondroblastoma
- Giant cell tumor


Metaphysis

- Osteomyelitis
- Nonossifying fibroma
- Unicameral bone cyst
- Aneurysmal bone cyst
- Fibrous dysplasia

Diaphysis:

- Fibrous dysplasia
- Osteofibrous dysplasia

Nonossifying Fibroma

- Most common benign lesion
 - Common incidental finding on xrays
- Eccentric, metaphyseal, multilocular lucency with a sclerotic border
- Often classic enough in appearance that no further imaging is necessary
 - Differential diagnosis: UBC, ABC
 - Other names for this include:
 - Fibrous cortical defect
 - Fibroxanthoma

Nonossifying Fibroma

- Observation is mainstay of treatment
- Pathologic fracture may be treated nonoperatively with predictable healing
- Large enough lesions causing fracture or bone pain may indicate
 - surgical management
 - Curettage and grafting
 - Local recurrence rare

<u>Unicameral Bone Cyst (UBC)</u>

- Benign cystic lesion
- 2:1 male:female ratio
- Common between ages 4-10
- Proximal humerus (59%) and proximal femur (26%) most common
- Uncommon to grow or recur after skeletal maturity

Unicameral Bone Cyst (UBC)

- Well-defined, radiolucent lesion centrally located within the metaphysis
 - Cortical thinning
 - No periosteal reaction
 - Mild cortical expansion
 - NOT wider than the epiphysis
- Fallen leaf sign
 - Fragment of bone floating inside the fluidfilled cavity
 - Typical after a fracture

Fallen leaf sign: cortical fragment within the lesion

<u>Unicameral Bone Cyst (UBC)</u>

- Most commonly identified at time of fracture (85% of cases)
- Thin cortical rim
 - Microfracture of this can lead to pain
 - Pathologic fracture possible after minor trauma, e.g. fall from standing
- More potential for growth when closer to the physis
 - Active lesions are near physis
 - Latent lesions are remote from physis

Unicameral Bone Cyst (UBC)

X-rays usually sufficient for diagnosis

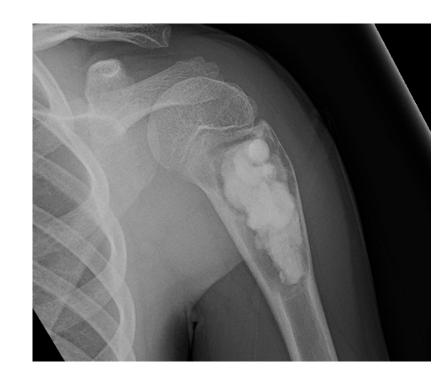
- CT or MR can be considered if diagnosis uncertain
 - Axial skeleton
- Aspiration of straw-colored fluid is diagnostic

<u>Unicameral Bone Cyst (UBC)</u>

- Treatment of the fracture can be guided by typical fracture treatment principles
 - Conservative treatment is most often indicated
- Low rates of spontaneous healing of cyst with fracture healing

<u>Unicameral Bone Cyst (UBC)</u>

- Treatment of the cyst can proceed upon fracture healing
- Treatment goals include preventing recurrent fracture
 - Prevent complications of fracture \rightarrow deformity or growth arrest

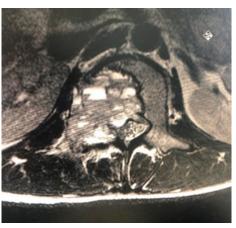


Unicameral Bone Cyst (UBC)

- Treatment options include injection, decompression, and curettage with grafting
- Comparable healing rates (~80%)
 - Bone marrow or steroid injection
 - Curettage and grafting with either autograft, allograft, or bone substitutes
 - Decompression with IM nails or cannulated screw

Aneurysmal Bone Cyst (ABC)

- Benign, but locally aggressive tumor
- Most commonly in teenagers (80%)
- Much less common than UBC
- Most common in long bones and spine
 - 50% long bones
 - 30% spine
- Typically metaphyseal
 - Occasionally found in the epiphysis or diaphysis


Core Curriculum V5

<u>Aneurysmal Bone Cyst (ABC)</u>

- Radiolucent, eccentric, expansile lesion, most commonly in the metaphysis
 - May see periosteal reaction due to aggressive nature of this benign tumor
- Fluid/fluid levels on MRI characteristic
- Differential diagnoses: telangiectatic osteosarcoma, giant cell tumor, UBC, secondary ABC
- Biopsy recommended to confirm diagnosis

Core Curriculum V5

Aneurysmal Bone Cyst (ABC)

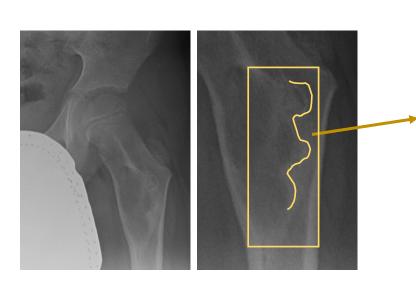
- Treatment is most commonly curettage and grafting, with or without adjuvant therapy
 - Embolization used pre-operatively to reduce bleeding
- High rate of local recurrence
- Radiation limited to inoperable lesions

Fibrous Dysplasia

- Benign lesion
- Most common in long bones, pelvis
 - Long lesion in a long bone
- Mutation in G_sα gene
- Failure of maturation of bone
 - Immature matrix leads to decreased mechanical strength of bone
 - This can lead to pain, pathologic fracture, deformity
- Clinical presentation with bone pain or fracture

Fibrous Dysplasia

- Monostotic more common
 - Femur most common site
- Polyostotic form can be more severe
 - Larger lesions and secondary deformity
 - Deformity can be caused by microfracture and progressive structural deformation
 - Shepherd's crook deformity of the proximal femur
 - Can be associated with endocrine abnormalities
 - McCune-Albright syndrome → precocious puberty



Fibrous Dysplasia –Imaging

- Xrays will demonstrate a "ground glass"
 - Irregular, metaplastic woven bone replacing trabecular bone
- Lesion may appear expansile, with endosteal scalloping
- Periosteal reaction not typically seen
- Differential diagnoses: UBC, NOF

"ground glass" appearance

Endosteal scalloping

Core Curriculum V5

<u>Fibrous Dysplasia - Treatment</u>

- Observation of asymptomatic or incidental lesions is recommended
 - Follow XR needed to ensure no progression or development of deformity
 - Progressive deformity is common in polyostotic disease
 - Rare in monostotic

Bisphosphonates can be used in polyostotic form to decrease bone

pain

Proximal femoral varus developing

<u>Fibrous Dysplasia – Conservative Treatment</u>

- Treatment of fracture
 - Conservative treatment most commonly indicated
 - Fractures heal rapidly
 - Good periosteal bone formation
 - Poor endosteal bone
 - Underlying bone will remain dysplastic
 - Curettage and grafting is <u>NOT</u> indicated
 - Graft is converted to FD bone

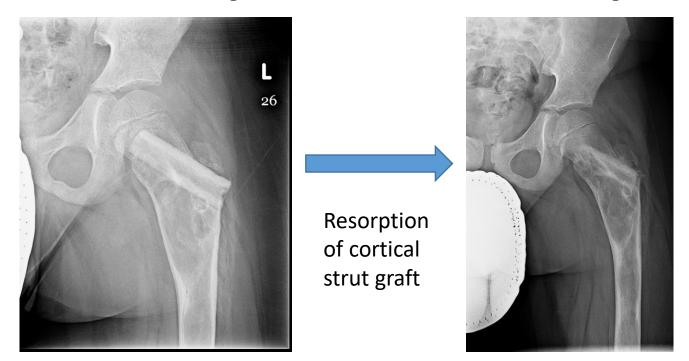
<u>Fibrous Dysplasia – Surgical Treatment</u>

- Most often indicated for
 - Lower extremity/weightbearing bones
 - Polyostotic cases with deformity
- Intramedullary fixation is ideal
 - Load-sharing implant
 - Protect the entire bone
 - Especially in polyostotic cases
 - Additional osteotomies often needed for associated deformities
- Fixed angle constructs required in periarticular fractures when IM fixation is not sufficient

Core Curriculum V5

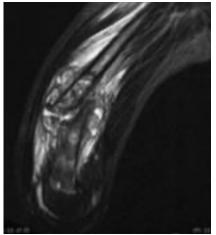
<u>Fibrous Dysplasia – Prophylactic Treatment</u>

- Prevention of fracture
 - Prophylactic fixation in weightbearing bones with large lesions and/or progressing deformity
 - May also present with bone pain in the absence of visible fracture
 - Minor trauma can lead to pathologic fracture



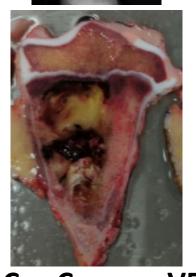
Fibrous Dysplasia - Augmentation

- Augmentation with cortical strut allograft may also improve mechanical strength
 - Bone graft will be resorbed and replaced by fibrous dysplasia over time
 - Nonstructural allograft does not have a role in treating this condition



Malignant Tumors & Metastases

- Malignant bone tumors may cause pathologic fractures
 - Osteosarcoma and Ewing's sarcoma most common
 - Metastases
- Signs of malignancy include
 - Aggressive appearance
 - Periosteal reaction
 - Bone forming and/or destructive lesions with poorly delineated borders
 - Not well circumscribed
 - Permeative appearance
 - Associated soft tissue mass



Malignant Tumors & Metastases

- Identification and diagnosis is crucial for appropriate treatment
- Work-up should be done by the treating orthopedic oncologist, especially biopsy
- Do not perform fixation before diagnosis is made
- Treatment of malignancy can include chemotherapy, radiation, and/or surgery
 - Limb salvage is often possible

Core Curriculum V5

Pediatric pathologic fractures

- Pathologic fractures can happen from many different etiologies, both benign and malignant
- Treatment of the fracture and treatment of the pathology are dependent on the etiology
- Many benign etiologies do not require treatment distinct from the fracture treatment
- An orthopaedic oncologist should be consulted when dealing with a suspected malignancy

References

- Kadhim, M., Thacker, M., Kadhim, A. et al. Treatment of unicameral bone cyst: systematic review and meta analysis. J Child Orthop 8, 171–191 (2014). https://doi.org/10.1007/s11832-014-0566-3
- Rapp TB, Ward JP, Alaia MJ.J Am Acad Orthop Surg. 2012 Apr;20(4):233-41. doi: 10.5435/JAAOS-20-04-233.
- DiCaprio MR, Enneking WF. Fibrous dysplasia. Pathophysiology, evaluation, and treatment. J Bone Joint Surg Am. 2005 Aug;87(8):1848-64. doi: 10.2106/JBJS.D.02942. PMID: 16085630.
- John A Herring. Tachdjian's Pediatric Orthopaedics: from the Texas Scottish Rite Hospital for Children. 5th edition. 2014. Elsevier Saunders: Philadelphia ISBN: 978-1-4377-1549-1.

