Radial Head and Neck Fractures

Thomas Krupko M.D.

Assistant Professor – Orthopaedic Trauma

University of Florida

Objectives

- Anatomy
- Elbow Instability
- Radial head fractures
 - Classification
 - Treatment
- Radial neck fractures
 - Treatment
- Essex-Lopresti Injuries

Anatomy

<u>Anatomy – Superficial Lateral Elbow</u>

Anatomy - PIN

Reference: Tabor Jr, Owen B., et al. "latrogenic posterior interosseous nerve injury: is transosseous static locked nailing of the radius feasible?." *Journal of orthopaedic trauma* 9.5 (1995): 427-429.

<u>Anatomy – Deep Lateral Elbow</u>

Reference: Rockwood and Green's - Figure 32.2

<u>Anatomy – Lateral Elbow</u>

Reference: Clinical Library of Thomas Krupko MD

<u>Anatomy – Medial Elbow</u>

Reference: Rockwood and Green's - Figure 32.2

Elbow Stability

Elbow Stability

- Static
 - Ulno-humeral joint
 - Radio-humeral Joint
 - LUCL
 - Anterior bundle of MCL

- Dynamic
 - Common flexor origin
 - Common extensor origin

Core Curriculum V5

- Biceps
- Brachialis
- Triceps

• Radius resists axial load and valgus

Mechanism of Injury

- Typically fall onto outstretched hand
 - Axial loading
 - Valgus force
- Radial head/neck fractures occur along a spectrum of elbow instability
- Any treatment requires complete understanding of the injured bone and soft tissue
 - CT scan can provide valuable info

Elbow Instability

Stable

Simple dislocation

Radial Head Fx

Radial Head Fx + Dislocation A

Post Trans Olecranon Fx Dislocation

Terrible Triad

Reference: Previous OTA Slides

- Mason Classification Type 1
 - Non- displaced fx or minimally displaced (<2mm)
 - No mechanical block to forearm rotation

Reference: Previous OTA Slides and the Clinical Library of Thomas Krupko MD

- Mason Classification Type 2
 - Displaced >2mm or angulated
 - Possible block to rotation

Reference: Previous OTA Slides and the Clinical Library of Thomas Krupko MD

- Mason Classification Type 3
 - Comminuted
 - Displaced
 - Obvious block to rotation

Reference: Previous OTA Slides and courtesy of Thomas Wright MD

- Mason Classification Type 4
 - Hotchkiss Modification
 - Bridges the gap with more complex elbow instability
 - Radial head fx with elbow dislocation
 - Beware LUCL avulsion and coronoid fx (terrible triad)

<u>Radial Head Fractures – Treatment Algorithm</u>

Reference: Revised from Previous OTA Slides

- Kocher
 - Most often utilized for radial head
 - Interval
 - Anconeus Radial Nerve
 - ECU PIN
 - 5cm incision from lateral epicondyle distally
 - Angled posteriorly 30-45 degrees
 - Often deep soft tissues will be disrupted by injury

OA

OTA Online Video

- Kocher Pitfalls
 - Damage to LUCL
 - Stay on anterior half of radial head
 - Damage to PIN
 - Pronate the arm to move nerve distally
 - Carefully dissect distal to annular ligament

• Kaplan

- Distal extension becomes dorsal Thompson approach
- More often used for radial neck/proximal radial shaft fxs
- Interval
 - ECRB Radial nerve or PIN (variable)
 - EDC PIN
- 10cm incision from lateral epicondyle to Lister's Tubercle

Reference: Clinical Library of Thomas Krupko MD

OTA Online Video

- Kaplan Pitfalls
 - PIN injury
 - Palpable between two heads of supinator.
 - Distal dissection can be utilized to locate the nerve (see image)
 - Can also split supinator (next slide)

Lateral Epicondyle

Reference: Clinical Library of Thomas Krupko MD

- Kaplan Pitfalls
 - PIN injury
 - Palpable between two heads of supinator.
 - Image shows supinator split and nerve exposed

Reference: Clinical Library of Thomas Krupko MD

- Kaplan Pitfalls
 - PIN injury
 - Final approach gives significant exposure of radial head, neck, and proximal shaft for more complex fractures

Lateral Elbow – Less Common Approaches

- EDC Split
 - Roughly half way between Kocher and Kaplan
 - Pros and Cons the same as these approaches
- Modified Boyd
 - Posterior approach
 - Elevate LUCL from lateral epicondyle
 - Can be used for combined olecranon/radial head fxs
 - Possible risk of synostosis
 - See references for complete technique

Radial Head Fractures – Treatment Algorithm

Reference: Revised from Previous OTA Slides

Radial Head Fractures – Excision

- Isolated radial head (stable joint)
 - Partial or complete resection can be a reliable option
 - Beware subtle instability
 - May lead to PLRI or radial shortening long term

- Radial head fx with ulnohumeral or longitudinal instability
 - Complete resection is contra-indicated
 - Partial resection a viable treatment option for small fragments (<25% of joint)

See References for more on long-term outcomes

Radial Head Fractures – Treatment Algorithm

Reference: Revised from Previous OTA Slides

Radial Head Fractures - ORIF

- Articular fx
 - Anatomic reduction
 - Compression
- Implants
 - Mini-frag screws
 - Headless compression

OTA Online Video

Radial Head Fractures - ORIF

- Articular fx
 - Anatomic reduction
 - Compression

• Implants

- Headless compression
 - Tripod Technique
 - See references for technique guide

Radial Head Fractures - ORIF

- Articular fx
 - Anatomic reduction
 - Compression
- Implants
 - Periarticular locking plates

OTA Online Video

<u>Radial Head Fractures – Implant Placement</u>

- Care must be taken to keep implants out of the proximal radio-ulnar joint
 - Block to supination and pronation
- Safe zone
 - 100 degree area
 - Between tip of radial styloid and Lister's Tubercle

<u>Radial Head Fractures – Greenspan View</u>

Reference: Clinical Library of Thomas Krupko MD

Radial Head Fractures – Intra-op Greenspan

Core Curriculum V5

Reference: Clinical Library of Thomas Krupko MD

Radial Head Fractures – Treatment Algorithm

Reference: Revised from Previous OTA Slides

Radial Head Fractures - Replacement

- Head options
 - Round
 - Easier placement
 - Eccentric
 - Mimics native anatomy
 - More difficult to place
 - Bipolar
 - Articulates at the head/neck junction
 - Dislocation can occur

Stem options

- Smooth
 - Loose fitting stem
 - Allows implant to find proper alignment
- Porous/Pressfit
 - Can loosen causing pain
 - Can result in dilatory remodeling
- Cemented
 - Typically used for salvage

OTA Online Video

Radial Head Fractures - Overstuffing

- Radial head height typically 0.9mm proximal to lateral coronoid process
- Only 2mm overstuffing causes 1mm of ulno-humeral gapping
- Common complication
 - Especially in unstable elbows that allow for the placement of large implants
- Leads to
 - Possible increased rate of capitellar erosion
 - Decreased flexion
 - Medial subluxation of the ulna

Radial Head Fractures - Overstuffing

Correct Size

Overstuffed

Core Curriculum V5

Reference: Clinical Library of Thomas Krupko MD and Courtesy of Thomas Wright MD

Radial Head Fractures - Overstuffing

- Direct visualization
 - Most accurate way to determine appropriate head size
 - Radial head should be just at or proximal to radial notch of the ulna
 - Pictures show appropriate placement
- Intra-op Fluoro
 - Needs to be assessed in flexion and extension
 - Less reliable
 - > 6mm overstuffing must be present to consistently be seen on fluoro

Radial notch

Radial Head Fractures – Stem Loosening

- Occurs with press-fit stems
- Typically within 1 year of surgery
- Significant dilatory remodeling of the proximal radius can also occur
- Removal of the implant may lead to proximal migration of the radius
- Cemented arthroplasty can be used for salvage if needed

Core Curriculum V5

Reference: Courtesy of Matthew Patrick MD

Radial Head Replacement – Outcomes

- Mid to long term outcomes are good to excellent typically
- Elbow stiffness is most common complication
 - Average approx. 10-135 degrees
- Loss of flex/ext strength of approx. 10%
- Peri-implant lucency common, but rarely requires revision
- Rate of OA approx 30%

Radial Neck Fractures

Radial Neck Fractures - Treatment

- Similar to radial head
- Non displaced
 - Non-op
- Displaced
 - No block to motion
 - Non-op
 - Block to motion
 - ORIF

Radial Neck Fractures - ORIF

- Kocher approach
 - Transverse neck fractures
- Kaplan/Thompson approach
 - Extension into the proximal radius
- Kickstand screws
 - Simple fx patterns only
- Plating (mini-frag vs anatomic)
 - Comminution

Complications

- Similar to radial head
 - PIN injury
 - Impingement of implants
 - Stiffness
 - Most common
 - Functional ROM of flexion/extension is 30-130 degrees

Reference: Previous OTA Slides and the Clinical Library of Thomas Krupko MD

Essex-Lopresti Injuries

Essex-Lopresti Injuries

- Radial head/neck fracture with:
 - Interosseous membrane disruption
 - DRUJ disruption
- Physical exam
 - Palpation of DRUJ for tenderness and shucking of the joint is critical
- Radiographs
 - Be sure to evaluate entire film
 - Contralateral films may help in diagnosis

Reference: Courtesy of Thomas Wright MD

Essex-Lopresti Injuries

- Treatment (Controversial!!)
 - Step 1 Obtain contralateral films
 - Step 2 Pin the DRUJ vs repair of TFCC
 - Attempt to match contra side
 - Step 3 ORIF or arthroplasty of radial head
 - Step 4 Possible reconstruction of interosseous ligament
- Pre-op contralateral films are essential to restore length and wrist alignment

Post-op Protocol

My Post-op Protocol

- For all stabilized fxs and dislocations regardless of fixation
- Initially
 - Immobilization for 10-14 days
- Secondarily
 - Early <u>ACTIVE</u> range of motion
 - Allows dynamic stabilizers to help hold reduction of joint
 - Will reduce pseudosubluxations
 - Limits elbow stiffness
 - Some limit active shoulder abduction if LUCL was repaired

Summary

- Anatomy
 - Lateral elbow ligaments and PIN location are critical
- Elbow Instability
 - Make sure that you understand the injury
- Radial head fractures
 - Classification (Mason)
 - Treatment
- Radial neck fractures
 - Treatment
- Essex-Lopresti Injuries
 - Don't miss!

<u>References</u>

- Acevedo DC, Paxton ES, Kukelyansky I, Abboud J, Ramsey M. Radial head arthroplasty: state of the art. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2014 Oct 1;22(10):633-42.
- Cheung EV, Steinmann SP. Surgical approaches to the elbow. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2009 May 1;17(5):325-33.
- Grassmann JP, Hakimi M, Gehrmann SV, Betsch M, Kröpil P, Wild M, Windolf J, Jungbluth P. The treatment of the acute Essex-Lopresti injury. The bone & joint journal. 2014 Oct;96(10):1385-91.
- Hildebrand AH, Zhang B, Horner NS, King G, Khan M, Alolabi B. Indications and outcomes of radial head excision: a systematic review. Shoulder & elbow. 2020 Jun;12(3):193-202.
- Lipman MD, Gause TM, Teran VA, Chhabra AB, Deal DN. Radial head fracture fixation using tripod technique with headless compression screws. The Journal of hand surgery. 2018 Jun 1;43(6):575-e1.
- Marsh JP, Grewal R, Faber KJ, Drosdowech DS, Athwal GS, King GJ. Radial head fractures treated with modular metallic radial head replacement: outcomes at a mean follow-up of eight years. JBJS. 2016 Apr 6;98(7):527-35.
- Ring D. Radial head fracture: open reduction—internal fixation or prosthetic replacement. Journal of shoulder and elbow surgery. 2011 Mar 1;20(2):S107-12.

<u>References</u>

- Ring D, Quintero J, Jupiter JB. Open reduction and internal fixation of fractures of the radial head. JBJS. 2002 Oct 1;84(10):1811-5.
- Robinson PM, Li MK, Dattani R, Van Rensburg L. The Boyd interval: a modification for use in the management of elbow trauma. Techniques in hand & upper extremity surgery. 2016 Mar 1;20(1):37-41.
- Smith GR, Hotchkiss RN. Radial head and neck fractures: anatomic guidelines for proper placement of internal fixation. Journal of shoulder and elbow surgery. 1996 Mar 1;5(2):113-7.
- Soyer AD, Nowotarski PJ, Kelso TB, Mighell MA. Optimal position for plate fixation of complex fractures of the proximal radius: a cadaver study. Journal of orthopaedic trauma. 1998 May 1;12(4):291-3.
- Tabor JO, Bosse MJ, Sims SH, Kellam JF. latrogenic posterior interosseous nerve injury: is transosseous static locked nailing of the radius feasible?. Journal of orthopaedic trauma. 1995;9(5):427-9.
- Tashjian RZ, Katarincic JA. Complex elbow instability. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2006 May 1;14(5):278-86.
- Tejwani NC, Mehta H. Fractures of the radial head and neck: current concepts in management. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2007 Jul 1;15(7):380-7.

